Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the Resilience of Machine Learning-Based IDS for Automotive Networks
RISE Research Institutes of Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-2772-4661
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-6116-164X
RISE Research Institutes of Sweden.
Vise andre og tillknytning
2023 (engelsk)Inngår i: proc of IEEE Vehicular Networking Conference, VNC, IEEE Computer Society , 2023, s. 239-246Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Modern automotive functions are controlled by a large number of small computers called electronic control units (ECUs). These functions span from safety-critical autonomous driving to comfort and infotainment. ECUs communicate with one another over multiple internal networks using different technologies. Some, such as Controller Area Network (CAN), are very simple and provide minimal or no security services. Machine learning techniques can be used to detect anomalous activities in such networks. However, it is necessary that these machine learning techniques are not prone to adversarial attacks. In this paper, we investigate adversarial sample vulnerabilities in four different machine learning-based intrusion detection systems for automotive networks. We show that adversarial samples negatively impact three of the four studied solutions. Furthermore, we analyze transferability of adversarial samples between different systems. We also investigate detection performance and the attack success rate after using adversarial samples in the training. After analyzing these results, we discuss whether current solutions are mature enough for a use in modern vehicles.

sted, utgiver, år, opplag, sider
IEEE Computer Society , 2023. s. 239-246
Emneord [en]
Adversarial AI/ML, Controller Area Network, Intrusion Detection System, Machine Learning, Vehicle Security, Computer crime, Control system synthesis, Controllers, Intrusion detection, Learning algorithms, Network security, Process control, Safety engineering, Automotive networks, Automotives, Autonomous driving, Controller-area network, Electronics control unit, Intrusion Detection Systems, Machine learning techniques, Machine-learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-65727DOI: 10.1109/VNC57357.2023.10136285Scopus ID: 2-s2.0-85163164299ISBN: 9798350335491 (digital)OAI: oai:DiVA.org:ri-65727DiVA, id: diva2:1787089
Konferanse
14th IEEE Vehicular Networking Conference, VNC 2023.Instanbul. 26 April 2023 through 28 April 2023.
Merknad

This research is partially funded by the CyReV project(Sweden’s Innovation Agency, D-nr 2019-03071), partiallyby the H2020 ARCADIAN-IoT (Grant ID. 101020259), andH2020 VEDLIoT (Grant ID. 957197).

Tilgjengelig fra: 2023-08-11 Laget: 2023-08-11 Sist oppdatert: 2024-03-03bibliografisk kontrollert

Open Access i DiVA

fulltext(499 kB)42 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 499 kBChecksum SHA-512
0e0d014dccbcedbd9e223f1a9f7b4d06af59eda8c5e3d3bf073892f3d614f321e758f4d443e5784dc0a9835cbbbde82afe76e4318bf1ef4512c0a2ad90201978
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Wang, HanIacovazzi, AlfonsoBlom, RolfRaza, Shahid

Søk i DiVA

Av forfatter/redaktør
Wang, HanIacovazzi, AlfonsoBlom, RolfRaza, Shahid
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 46 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 169 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0