Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On-Demand Inkjet Printed Hydrophilic Coatings for Flow Control in 3D-Printed Microfluidic Devices Embedded with Organic Electrochemical Transistors
RISE Research Institutes of Sweden, Digitala system, Smart hårdvara. Linköping University, Sweden.ORCID-id: 0000-0001-6886-8103
Leitat Technological Center, Spain; Technical University of Catalonia, Spain.
RISE Research Institutes of Sweden, Digitala system, Smart hårdvara.ORCID-id: 0000-0001-6889-0351
Technical University of Catalonia, Spain.
Vise andre og tillknytning
2023 (engelsk)Inngår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 8, nr 15, artikkel-id 2300127Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Microfluidic surface chemistry can enable control of capillary-driven flow without the need for bulky external instrumentation. A novel pondered nonhomogeneous coating defines regions with different wetting properties on the microchannel walls. It changes the curvature of the liquid–air meniscus at various channel cross-sections and consequently leads to different capillary pressures, which is favorable in the strive toward automatic flow control. This is accomplished by the deposition of hydrophilic coatings on the surface of multilevel 3D-printed (3DP) microfluidic devices via inkjet printing, thereby retaining the surface hydrophilicity for at least 6 months of storage. To the best of our knowledge, this is the first demonstration of capillary flow control in 3DP microfluidics enabled by inkjet printing. The method is used to create “stop” and “delay” valves to enable preprogrammed capillary flow for sequential release of fluids. To demonstrate further utilization in point-of-care sensing applications, screen printed organic electrochemical transistors are integrated within the microfluidic chips to sense, sequentially and independently from external actions, chloride anions in the (1–100) × 10−3 m range. The results present a cost-effective fabrication method of compact, yet comprehensive, all-printed sensing platforms that allow fast ion detection (<60 s), including the capability of automatic delivery of multiple test solutions. © 2023 The Authors. 

sted, utgiver, år, opplag, sider
John Wiley and Sons Inc , 2023. Vol. 8, nr 15, artikkel-id 2300127
Emneord [en]
3D-printing, capillary-driven microfluidics, hydrophilic coating, inkjet printing, OECT, 3D printing, Capillarity, Capillary flow, Chlorine compounds, Coatings, Cost effectiveness, Flow control, Hydrophilicity, Ink jet printing, Microfluidic chips, Wetting, 3-D printing, Capillary-driven microfluidic, Hydrophilic coatings, Ink jet, Ink-jet printing, Microfluidics devices, On demands, Organic electrochemical transistors, Microfluidics
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-65671DOI: 10.1002/admt.202300127Scopus ID: 2-s2.0-85163768709OAI: oai:DiVA.org:ri-65671DiVA, id: diva2:1786894
Merknad

Correspondence Address: P. Andersson Ersman; RISE Research Institutes of Sweden, Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, Norrköping, 60233, Sweden.  

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement no. 813863 (BORGES).

 

Tilgjengelig fra: 2023-08-10 Laget: 2023-08-10 Sist oppdatert: 2024-05-23bibliografisk kontrollert

Open Access i DiVA

fulltext(1156 kB)27 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1156 kBChecksum SHA-512
1198a158110ef97b7847a80b9fa2afcf8d3930f80bd42dc827f3f8a975b10cb9b03c4b6a060c8faf3b527f19d1cd8b596985b6c2bb49074a89c1bef00a18794a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Makhinia, AnatoliiBeni, ValerioAndersson Ersman, Peter

Søk i DiVA

Av forfatter/redaktør
Makhinia, AnatoliiBeni, ValerioAndersson Ersman, Peter
Av organisasjonen
I samme tidsskrift
Advanced Materials Technologies

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 32 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 165 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0