Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SparSFA: Towards robust and communication-efficient peer-to-peer federated learning
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-2772-4661
Imperial College London, UK.
IBM Research Europe, Ireland.
RISE Research Institutes of Sweden, Digitala system, Industriella system.ORCID-id: 0000-0002-1954-760x
Vise andre og tillknytning
2023 (engelsk)Inngår i: Computers & security (Print), ISSN 0167-4048, E-ISSN 1872-6208, Vol. 129, artikkel-id 103182Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Federated Learning (FL) has emerged as a powerful paradigm to train collaborative machine learning (ML) models, preserving the privacy of the participants’ datasets. However, standard FL approaches present some limitations that can hinder their applicability in some applications. Thus, the need of a server or aggregator to orchestrate the learning process may not be possible in scenarios with limited connectivity, as in some IoT applications, and offer less flexibility to personalize the ML models for the different participants. To sidestep these limitations, peer-to-peer FL (P2PFL) provides more flexibility, allowing participants to train their own models in collaboration with their neighbors. However, given the huge number of parameters of typical Deep Neural Network architectures, the communication burden can also be very high. On the other side, it has been shown that standard aggregation schemes for FL are very brittle against data and model poisoning attacks. In this paper, we propose SparSFA, an algorithm for P2PFL capable of reducing the communication costs. We show that our method outperforms competing sparsification methods in P2P scenarios, speeding the convergence and enhancing the stability during training. SparSFA also includes a mechanism to mitigate poisoning attacks for each participant in any random network topology. Our empirical evaluation on real datasets for intrusion detection in IoT, considering both balanced and imbalanced-dataset scenarios, shows that SparSFA is robust to different indiscriminate poisoning attacks launched by one or multiple adversaries, outperforming other robust aggregation methods whilst reducing the communication costs through sparsification. 

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2023. Vol. 129, artikkel-id 103182
Emneord [en]
Adversarial machine learning, Communication efficiency, IDS, IoT, Peer-to-peer federated learning, Poisoning attack, Cost reduction, Deep neural networks, Internet of things, Learning systems, Network architecture, Network security, Network topology, Communication cost, Machine learning models, Machine-learning, Peer to peer, Poisoning attacks, Intrusion detection
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-64312DOI: 10.1016/j.cose.2023.103182Scopus ID: 2-s2.0-85151480655OAI: oai:DiVA.org:ri-64312DiVA, id: diva2:1752958
Merknad

Correspondence Address: Wang, H.; RISE Research Institutes of SwedenSweden; email: han.wang@ri.se; Funding details: 830927; Funding details: 101020259; Funding text 1: This research is funded by the EU H2020 projects ARCADIAN-IoT (Grant ID. 101020259) and CONCORDIA (Grant ID: 830927).; Funding text 2: This research is funded by the EU H2020 projects ARCADIAN-IoT (Grant ID. 101020259) and CONCORDIA (Grant ID: 830927).

Tilgjengelig fra: 2023-04-25 Laget: 2023-04-25 Sist oppdatert: 2023-11-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Wang, HanEklund, DavidRaza, Shahid

Søk i DiVA

Av forfatter/redaktør
Wang, HanEklund, DavidRaza, Shahid
Av organisasjonen
I samme tidsskrift
Computers & security (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 166 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0