Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 24/9-2024, kl 12.00-14.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integration of neuromorphic AI in event-driven distributed digitized systems: Concepts and research directions
Luleå University of Technology, Sweden.
Luleå University of Technology, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Luleå University of Technology, Sweden.ORCID-id: 0000-0003-3932-4144
Luleå University of Technology, Sweden.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Frontiers in Neuroscience, ISSN 1662-4548, E-ISSN 1662-453X, Vol. 17, artikel-id 1074439Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Increasing complexity and data-generation rates in cyber-physical systems and the industrial Internet of things are calling for a corresponding increase in AI capabilities at the resource-constrained edges of the Internet. Meanwhile, the resource requirements of digital computing and deep learning are growing exponentially, in an unsustainable manner. One possible way to bridge this gap is the adoption of resource-efficient brain-inspired “neuromorphic” processing and sensing devices, which use event-driven, asynchronous, dynamic neurosynaptic elements with colocated memory for distributed processing and machine learning. However, since neuromorphic systems are fundamentally different from conventional von Neumann computers and clock-driven sensor systems, several challenges are posed to large-scale adoption and integration of neuromorphic devices into the existing distributed digital–computational infrastructure. Here, we describe the current landscape of neuromorphic computing, focusing on characteristics that pose integration challenges. Based on this analysis, we propose a microservice-based conceptual framework for neuromorphic systems integration, consisting of a neuromorphic-system proxy, which would provide virtualization and communication capabilities required in distributed systems of systems, in combination with a declarative programming approach offering engineering-process abstraction. We also present concepts that could serve as a basis for the realization of this framework, and identify directions for further research required to enable large-scale system integration of neuromorphic devices.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2023. Vol. 17, artikel-id 1074439
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-64055DOI: 10.3389/fnins.2023.1074439OAI: oai:DiVA.org:ri-64055DiVA, id: diva2:1738468
Forskningsfinansiär
EU, Horisont Europa, 101015922
Anmärkning

This work was partially funded by the Kempe Foundations under contract JCK-1809, the Arrowhead Tools project (ECSEL JU Grant No. 737 459), the DAIS project (KDT JU Grant No. 101007273), the AI@Edge project (Horizon 2020 Grant No. 101015922), and the Arctic 5G Test Network project (ERUF Interreg Nord, NYPS 20202460).

Tillgänglig från: 2023-02-22 Skapad: 2023-02-22 Senast uppdaterad: 2023-07-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Lindgren, Anders

Sök vidare i DiVA

Av författaren/redaktören
Lindgren, Anders
Av organisationen
Datavetenskap
I samma tidskrift
Frontiers in Neuroscience
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 215 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf