Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Few-shot bioacoustic event detection using a prototypical network ensemble with adaptive embedding functions
RISE Research Institutes of Sweden, Digital Systems, Data Science. Lund University, Sweden.ORCID iD: 0000-0002-5032-4367
RISE Research Institutes of Sweden, Digital Systems, Data Science.ORCID iD: 0009-0004-1803-4193
RISE Research Institutes of Sweden, Digital Systems, Data Science.ORCID iD: 0000-0002-5299-142X
RISE Research Institutes of Sweden, Digital Systems, Data Science.ORCID iD: 0000-0002-9567-2218
Show others and affiliations
2022 (English)Conference paper, Published paper (Refereed)
Abstract [en]

In this report we present our method for the DCASE 2022 challenge on few-shot bioacoustic event detection. We use an ensemble of prototypical neural networks with adaptive embedding functions and show that both ensemble and adaptive embedding functions can be used to improve results from an average F-score of 41.3% to an average F-score of 60.0% on the validation dataset.

Place, publisher, year, edition, pages
2022.
Keywords [en]
Machine listening, bioacoustics, few-shot learning, ensemble
National Category
Language Technology (Computational Linguistics)
Identifiers
URN: urn:nbn:se:ri:diva-62530OAI: oai:DiVA.org:ri-62530DiVA, id: diva2:1726698
Conference
Detection and Classification of Acoustic Scenes and Events 2022, DCASE 2022
Available from: 2023-01-13 Created: 2023-01-13 Last updated: 2024-07-28Bibliographically approved

Open Access in DiVA

fulltext(347 kB)135 downloads
File information
File name FULLTEXT01.pdfFile size 347 kBChecksum SHA-512
0ef1ff4fc99ec7117d60e835df7b92b75c5797a3f51bb8b6058c353ff595f0b991e6e788b5b547e143dc14fc790bc9a66c92dd0cdb6047a8a952ab7c908de948
Type fulltextMimetype application/pdf

Authority records

Martinsson, JohnWillbo, MartinPirinen, AleksisMogren, Olof

Search in DiVA

By author/editor
Martinsson, JohnWillbo, MartinPirinen, AleksisMogren, Olof
By organisation
Data Science
Language Technology (Computational Linguistics)

Search outside of DiVA

GoogleGoogle Scholar
Total: 137 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 411 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf