Production of energy-storage paper electrodes using a pilot-scale paper machineShow others and affiliations
2022 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 40, p. 21579-21589Article in journal (Refereed) Published
Abstract [en]
The global efforts in electrifying our society drive the demand for low-cost and sustainable energy storage solutions. In the present work, a novel material concept was investigated to enable fabrication of several 10 meter-long rolls of supercapacitor paper electrodes on a pilot-scale paper machine. The material concept was based on cationized, cellulose-rich wood-derived fibres, conducting polymer PEDOT:PSS, and activated carbon filler particles. Cationic fibres saturated with anionic PEDOT:PSS provide a conducting scaffold hosting the activated carbon, which functions as the active charge-storage material. The response from further additives was systematically investigated for several critical paper properties. Cellulose nanofibrils were found to improve mechanical properties, while carbon black enhanced both the conductivity and the storage capacity of the activated carbon, reaching a specific capacitance of 67 F g−1. This pilot trial shows that “classical” papermaking methods are fit for the purpose and provides valuable insights on how to further advance bio-based energy storage solutions for large-scale applications.
Place, publisher, year, edition, pages
Royal Society of Chemistry , 2022. Vol. 10, no 40, p. 21579-21589
Keywords [en]
Activated carbon, Carbon black, Cellulose, Conducting polymers, Electrodes, Energy storage, Filled polymers, Fillers, Paper products, Papermaking, Papermaking machinery, Storage (materials), Wood, Carbon fillers, Cationized, Low-cost energy, Material concepts, Novel materials, Paper machine, PEDOT/PSS, Pilot scale, Storage solutions, Sustainable energy, Additives
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:ri:diva-61214DOI: 10.1039/d2ta04431eScopus ID: 2-s2.0-85140059550OAI: oai:DiVA.org:ri-61214DiVA, id: diva2:1715572
Note
Funding text 1: This work has been carried out in the Digital Cellulose Center, in which Agfa has kindly supplied PEDOT:PSS and Ahlstrom-Munksjö has kindly put their pilot paper machine to the project's disposal as well as offered analytical services (TGA, ionic demand and cross-section SEM/EDX). A special thanks to Robert Brooke at Research Institutes of Sweden who has created the conceptual visualization in Fig. 1B. We also acknowledge support from Treesearch, a collaboration platform for Swedish forest industrial research.
2022-12-022022-12-022023-12-06Bibliographically approved