Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The numerical algebraic geometry of bottlenecks
RISE Research Institutes of Sweden, Digitala system, Industriella system.ORCID-id: 0000-0002-1954-760x
2023 (Engelska)Ingår i: Advances in Applied Mathematics, ISSN 0196-8858, E-ISSN 1090-2074, Vol. 142, artikel-id 102416Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This is a computational study of bottlenecks on algebraic varieties. The bottlenecks of a smooth variety X⊆Cn are the lines in Cn which are normal to X at two distinct points. The main result is a numerical homotopy that can be used to approximate all isolated bottlenecks. This homotopy has the optimal number of paths under certain genericity assumptions. In the process we prove bounds on the number of bottlenecks in terms of the Euclidean distance degree. Applications include the optimization problem of computing the distance between two real varieties. Also, computing bottlenecks may be seen as part of the problem of computing the reach of a smooth real variety and efficient methods to compute the reach are still to be developed. Relations to triangulation of real varieties and meshing algorithms used in computer graphics are discussed in the paper. The resulting algorithms have been implemented with Bertini [4] and Macaulay2 [17]. 

Ort, förlag, år, upplaga, sidor
Academic Press Inc. , 2023. Vol. 142, artikel-id 102416
Nyckelord [en]
Numerical algebraic geometry, Reach of manifolds, Systems of polynomials, Triangulation of manifolds, Algebra, Computer graphics, Geometry, Algebraic varieties, Computational studies, Distinct points, Genericity, Homotopies, Optimal number, Reach of manifold, System of polynomial, Triangulation of manifold, Triangulation
Nationell ämneskategori
Geometri
Identifikatorer
URN: urn:nbn:se:ri:diva-60080DOI: 10.1016/j.aam.2022.102416Scopus ID: 2-s2.0-85136595548OAI: oai:DiVA.org:ri-60080DiVA, id: diva2:1694452
Tillgänglig från: 2022-09-09 Skapad: 2022-09-09 Senast uppdaterad: 2022-09-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Eklund, David

Sök vidare i DiVA

Av författaren/redaktören
Eklund, David
Av organisationen
Industriella system
I samma tidskrift
Advances in Applied Mathematics
Geometri

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 104 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf