Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Variational Autoencoders with Riemannian Brownian Motion Priors
2020 (Engelska)Ingår i: Proceedings of the 37th International Conference on Machine Learning, PMLR , 2020, Vol. 119, s. 5053-5066Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Variational Autoencoders (VAEs) represent the given data in a low-dimensional latent space, which is generally assumed to be Euclidean. This assumption naturally leads to the common choice of a standard Gaussian prior over continuous latent variables. Recent work has, however, shown that this prior has a detrimental effect on model capacity, leading to subpar performance. We propose that the Euclidean assumption lies at the heart of this failure mode. To counter this, we assume a Riemannian structure over the latent space, which constitutes a more principled geometric view of the latent codes, and replace the standard Gaussian prior with a Riemannian Brownian motion prior. We propose an efficient inference scheme that does not rely on the unknown normalizing factor of this prior. Finally, we demonstrate that this prior significantly increases model capacity using only one additional scalar parameter.

Ort, förlag, år, upplaga, sidor
PMLR , 2020. Vol. 119, s. 5053-5066
Serie
Proceedings of Machine Learning Research
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-58544OAI: oai:DiVA.org:ri-58544DiVA, id: diva2:1638377
Konferens
International Conference on Machine Learning
Tillgänglig från: 2022-02-16 Skapad: 2022-02-16 Senast uppdaterad: 2022-02-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Electronic full texthttps://proceedings.mlr.press/v119/kalatzis20a.html

Person

Eklund, David

Sök vidare i DiVA

Av författaren/redaktören
Eklund, David
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 46 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf