Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Brann i holrom bak royaloljebehandla kledning av furu
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0000-0003-2164-940x
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0009-0005-6337-1313
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0000-0002-8413-7500
2022 (Norwegian)Report (Other academic)
Abstract [en]

This report contains measurements, observations, and results from 30 experiments with fire in the cavity between the wood cladding and the wind barrier. The experiments were performed at RISE Fire Research's laboratory in Trondheim in 2021. The main focus of the study is on fire inside the cavity between the wind barrier and the cladding. The purpose has been to investigate how different parameters, such as material use and geometry, affect the fire in this cavity. This test series is done by using varying combinations of royal oil-treated and untreated cladding of pine with wind barriers of two different reaction to fire classifications and two different lathing types in the various experiments The various experimental setups have been done in a way that is meant to represent typical constructions in Norwegian houses with wooden cladding. All walls were flat, with cladding without gaps or openings and without internal corners, extruding parts, doors, windows, or other penetrations. In most experiments, measures were taken to shield the outside of the cladding from exposure to the initial fire. In several experiments, however, the fire also established itself on the outside of the cladding after it had burned through the cladding from the inside. Large-scale experiments have also been carried out, where both the cavity and the front of the cladding were exposed to the initial fire. The experiments' results show that the use of royal oil-treated cladding had no statistically significant effect on how the fire in the cavity spread. The results indicate that the use of the used wind barrier with reaction to fire classification F lead to faster flame spread and temperature rise than the used wind barrier with fire classification A2 did, but this is not statistically significant and may be due to random variations. Experiments with vertical lathing showed faster temperature rise in the cavity than experiments with cross-lathing. This means that the heat spreads faster upwards in the cavity when it forms continuous vertical channels than where the cavity is connected both horizontally and vertically between the cross-lathing. In the cavity with cross-lathing, on the other hand, the heat and fire spread to a greater extent laterally than in the cavity with only vertical lathing. The fire in the cavity was in many of the experiments limited by oxygen supply. This shows that the supply of air in the cavity can be as crucial for delimiting the fire spread as the fire properties of the materials inside the cavity. When the cavity fire is delimited by the oxygen supply, higher amounts of combustible gases will be formed in the smoke. This can cause the fire to spread to other places if this gas can be re-ignited.

Place, publisher, year, edition, pages
2022. , p. 49
Series
RISE Rapport ; 2022:05
Keywords [en]
Fire, wood, royal-oil treatment, cladding, façade, cavity
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:ri:diva-58537ISBN: 978-91-89561-20-5 (electronic)OAI: oai:DiVA.org:ri-58537DiVA, id: diva2:1637600
Available from: 2022-02-14 Created: 2022-02-14 Last updated: 2023-11-01Bibliographically approved

Open Access in DiVA

fulltext(4525 kB)113 downloads
File information
File name FULLTEXT01.pdfFile size 4525 kBChecksum SHA-512
5835b51ccfbf73e72fd73ee9d0e860a327dd96f835817ec3bafacb411d6f5b0f5627182b23c98a7c1dc01f44372d07a8091e10da0870d97f07b6f9a98a6f1074
Type fulltextMimetype application/pdf

Authority records

Stølen, ReidarBergius, MikaelFjærestad, Janne Siren

Search in DiVA

By author/editor
Stølen, ReidarBergius, MikaelFjærestad, Janne Siren
By organisation
Fire and Safety
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 113 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 212 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf