System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Effect of Accelerated Ageing on Reaction-to-Fire Properties–Composite Materials
RISE Research Institutes of Sweden, Safety and Transport, Fire Technology. DTU Technical University of Denmark, Denmark.ORCID iD: 0000-0002-7001-9757
RISE Research Institutes of Sweden, Safety and Transport, Fire Technology.ORCID iD: 0000-0002-6430-6602
DTU Technical University of Denmark, Denmark.
RISE Research Institutes of Sweden, Safety and Transport, Safety. DTU Technical University of Denmark, Denmark.ORCID iD: 0000-0002-6120-2461
2022 (English)In: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 58, no 3, p. 1305-1332Article in journal (Refereed) Published
Abstract [en]

As material age, the durability, strength, and other mechanical properties are impacted. The lifespan of a material generally decreases when exposed to weathering conditions such as wind, temperature, humidity, and light. It is important to have knowledge of how materials age and how the material properties are affected. Regarding materials´ fire behaviour and the effect of ageing on these properties, the knowledge is limited. The research questions of the current work are: Are the fire properties of composite materials affected by ageing? And if so, how is it affected? The study is on material at Technology Readiness Level 9 (TRL). In this study, three composite fibre laminates developed for marine applications were exposed to accelerated ageing. Two different ageing conditions were selected, thermal ageing with an increased temperature of 90°C and moisture ageing in a moderately increased temperature of 40°C and a relative humidity of 90%. Samples were collected after one, two and four weeks of ageing. The reaction-to-fire properties after ageing was evaluated using the ISO 5660–1 cone calorimeter and the EN ISO 5659–2 smoke chamber with FTIR gas analysis. The test results showed that the fire behaviour was affected. Two of the composite laminates, both phenolic/basalt composites, showed a deteriorated fire behaviour from the thermal ageing and the third composite laminate, a PFA/glass fibre composite, showed an improved fire behaviour both for thermal and moisture ageing. The smoke toxicity was affected by the accelerated ageing, especially for the PFA/glass fibre composite that showed a higher production of CO and HCN, both for the thermal aged and the moisture aged samples. © 2021, The Author(s).

Place, publisher, year, edition, pages
Springer , 2022. Vol. 58, no 3, p. 1305-1332
Keywords [en]
Accelerated ageing, Composite laminates, Cone calorimeter, Moisture exposure, Reaction-to-fire, Smoke density, Thermal exposure, Toxicity, Durability, Fires, Laminated composites, Marine applications, Smoke, %moisture, Composite laminate, Fire behaviour, Fire properties, Reaction to fire, Moisture
National Category
Composite Science and Engineering
Identifiers
URN: urn:nbn:se:ri:diva-57366DOI: 10.1007/s10694-021-01197-9Scopus ID: 2-s2.0-85119970365OAI: oai:DiVA.org:ri-57366DiVA, id: diva2:1621329
Note

Funding details: Horizon 2020 Framework Programme, H2020, 723246; Funding text 1: The research presented is a part of the RAMSSES project which has received funding under the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 723246.

Available from: 2021-12-17 Created: 2021-12-17 Last updated: 2023-06-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sandinge, AnnaBlomqvist, PerDederichs, Anne

Search in DiVA

By author/editor
Sandinge, AnnaBlomqvist, PerDederichs, Anne
By organisation
Fire TechnologySafety
In the same journal
Fire technology
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 139 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf