Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plant-wide modelling and analysis of WWTP temperature dynamics for sustainable heat recovery from wastewater
RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation. Lund University, Sweden.ORCID iD: 0000-0003-1547-8413
RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation.ORCID iD: 0000-0001-9838-2470
RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation. Lund University, Sweden.
Lund University, Sweden.
Show others and affiliations
2021 (English)In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 84, no 4, p. 1023-1036Article in journal (Refereed) Published
Abstract [en]

Wastewater heat recovery upstream of wastewater treatment plants (WWTP) poses a risk to treatment performance, i.e. the biological processes. In order to perform a sustainability analysis, a detailed prediction of the temperature dynamics over the WWTP is needed. A comprehensive set of heat balance equations was included in a plant-wide process model and validated for the WWTP in Linköping, Sweden, to predict temperature variations over the whole year in a temperate climate. A detailed model for the excess heat generation of biological processes was developed. The annual average temperature change from influent to effluent was 0.78°C with clear seasonal variations, wherein 45% of the temperature change arose from processes other than the activated sludge unit. To address this, plant-wide energy modelling was necessary to predict in-tank temperature in the biological treatment steps. The energy processes with the largest energy gains were solar radiation and biological processes, while the largest losses were from conduction, convection, and atmospheric radiation. Tanks with large surface areas showed a significant impact on the heat balance regardless of biological processes. Simulating a 3°C lower influent temperature, the temperature in the activated sludge unit dropped by 2.8°C, which had a negative impact on nitrogen removal

Place, publisher, year, edition, pages
IWA Publishing , 2021. Vol. 84, no 4, p. 1023-1036
Keywords [en]
Energy and heat balance, Mathematical modelling, Resource recovery, Temperature, Wastewater heat recovery, Wastewater treatment plant, activated sludge, biological method, climate prediction, heat balance, performance assessment, seasonal variation, solar radiation, Sweden
National Category
Water Engineering
Identifiers
URN: urn:nbn:se:ri:diva-56693DOI: 10.2166/wst.2021.277Scopus ID: 2-s2.0-85114170209OAI: oai:DiVA.org:ri-56693DiVA, id: diva2:1598256
Note

 Funding details: Svenska Forskningsrådet Formas, 942-2016-80; Funding details: Svenskt Vatten, SWWA, 16-106; Funding text 1: The authors acknowledge the financial support provided by the Swedish research council Formas (942-2016-80), The Swedish Water and Wastewater Association (16-106), Sweden Water Research, Käppalaförbundet and Tekniska Verken in Linköping for the project HÅVA (‘Sustainability analysis for heat recovery from wastewater’). Tekniska Verken in Linköping, is also gratefully acknowledged for their financial support and for supporting measurement campaigns.; Funding text 2: The authors acknowledge the financial support provided by the Swedish research council Formas (942-2016-80), The Swedish Water and Wastewater Association (16-106), Sweden Water Research, K?ppalaf?rbundet and Tekniska Verken in Link?ping for the project H?VA ('Sustainability analysis for heat recovery from wastewater'). Tekniska Verken in Link?ping, is also gratefully acknowledged for their financial support and for supporting measurement campaigns.

Available from: 2021-09-28 Created: 2021-09-28 Last updated: 2023-05-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Arnell, MagnusAhlström, Marcus

Search in DiVA

By author/editor
Arnell, MagnusAhlström, Marcus
By organisation
System Transition and Service Innovation
In the same journal
Water Science and Technology
Water Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf