Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Low temperature chemical sintering of inkjet-printed Zn nanoparticles for highly conductive flexible electronic components
RISE Research Institutes of Sweden, Digitala system, Smart hårdvara.ORCID-id: 0000-0002-7825-9501
RISE Research Institutes of Sweden. Idaho National Laboratory, USA.
RISE Research Institutes of Sweden, Digitala system, Smart hårdvara.
RISE Research Institutes of Sweden, Digitala system, Smart hårdvara.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: npj Flexible Electronics, ISSN 2397-4621, Vol. 5, nr 1, artikel-id 14Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study illustrates an innovative way to fabricate inkjet-printed tracks by sequential printing of Zn nanoparticle ink and curing ink for low temperature in situ chemical sintering. Employing chemical curing in place of standard sintering methods leads to the advantages of using flexible substrates that may not withstand the high thermal budgets of the standard methods. A general formulation engineering method is adopted to produce highly concentrated Zn ink which is cured by inkjet printing an over-layer of aqueous acetic acid which is the curing agent. The experimental results reveal that a narrow window of acid concentration of curing ink plays a crucial role in determining the electrical properties of the printed Zn nanoparticles. Highly conductive (~105 S m−1) and mechanically flexible printed Zn features are achieved. In addition, from systematic material characterization, we obtain an understanding of the curing mechanism. Finally, a touch sensor circuit is demonstrated involving all-Zn printed conductive tracks. © 2021, The Author(s).

Ort, förlag, år, upplaga, sidor
Nature Research , 2021. Vol. 5, nr 1, artikel-id 14
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:ri:diva-55467DOI: 10.1038/s41528-021-00111-1Scopus ID: 2-s2.0-85109623396OAI: oai:DiVA.org:ri-55467DiVA, id: diva2:1583398
Anmärkning

 Funding details: Horizon 2020 Framework Programme, H2020, 814485; Funding text 1: The authors would like to thank the LEE-BED project funded by European Union’s Horizon 2020 research and innovation program under grant agreement number 814485.

Tillgänglig från: 2021-08-06 Skapad: 2021-08-06 Senast uppdaterad: 2024-03-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Majee, SubimalUl Hassan Alvi, NaveedBeni, ValerioNilsson, David

Sök vidare i DiVA

Av författaren/redaktören
Majee, SubimalUl Hassan Alvi, NaveedBeni, ValerioNilsson, David
Av organisationen
Smart hårdvaraRISE Research Institutes of Sweden
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 36 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf