Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Data-Driven Approach to Assess the Risk of Encountering Hazardous Materials in the Building Stock Based on Environmental Inventories
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik. Lund University, Sweden.ORCID-id: 0000-0002-2178-5391
RISE Research Institutes of Sweden. Lund University, Sweden.ORCID-id: 0000-0002-3863-0740
RISE Research Institutes of Sweden, Samhällsbyggnad, Systemomställning och tjänsteinnovation.ORCID-id: 0000-0002-5044-6989
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.ORCID-id: 0000-0002-9860-4472
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Sustainability, E-ISSN 2071-1050, Vol. 13, nr 14, artikel-id 7836Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The presence of hazardous materials hinders the circular economy in construction and demolition waste management. However, traditional environmental investigations are costly and time-consuming, and thus lead to limited adoption. To deal with these challenges, the study investigated the possibility of employing registered records as input data to achieve in situ hazardous building materials management at a large scale. Through characterizing the eligible building groups in question, the risk of unexpected cost and delay due to acute abatement could be mitigated. Merging the national building registers and the environmental inventory from renovated and demolished buildings in the City of Gothenburg, a training dataset was created for data validation and statistical operations. Four types of inventories were evaluated to identify the building groups with adequate data size and data quality. The observations’ representativeness was described by plotting the distribution of building features between the Gothenburg dataset and the training dataset. Evaluating the missing data and the positive detection rates affirmed that reports and protocols could locate hazardous materials in the building stock. The asbestos and polychlorinated biphenyl (PCB)-containing materials with high positive detection rates were highlighted and discussed. Moreover, the potential inventory types and building groups for future machine learning prediction were delineated through the cross-validation matrix. The novel study contributes to the method development for assessing the risk of residual hazardous materials in buildings.

Ort, förlag, år, upplaga, sidor
MDPI, 2021. Vol. 13, nr 14, artikel-id 7836
Nyckelord [en]
hazardous materials, asbestos, PCB, environmental investigation, statistical inference, cross-validation, machine learning pre-processing
Nationell ämneskategori
Miljöanalys och bygginformationsteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-55650DOI: 10.3390/su13147836OAI: oai:DiVA.org:ri-55650DiVA, id: diva2:1583159
Tillgänglig från: 2021-08-05 Skapad: 2021-08-05 Senast uppdaterad: 2024-02-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Wu, Pei-YuMjörnell, KristinaMangold, MikaelSandels, ClaesJohansson, Tim

Sök vidare i DiVA

Av författaren/redaktören
Wu, Pei-YuMjörnell, KristinaMangold, MikaelSandels, ClaesJohansson, Tim
Av organisationen
MätteknikRISE Research Institutes of SwedenSystemomställning och tjänsteinnovation
I samma tidskrift
Sustainability
Miljöanalys och bygginformationsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 83 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf