Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-IID Data Re-Balancing at IoT Edge with Peer-to-Peer Federated Learning for Anomaly Detection
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-2772-4661
Imperial College London, UK.
RISE Research Institutes of Sweden, Digitala system, Industriella system.ORCID-id: 0000-0002-1954-760x
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-8192-0893
2021 (Engelska)Ingår i: Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Association for Computing Machinery , 2021, s. 153-163Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The increase of the computational power in edge devices has enabled the penetration of distributed machine learning technologies such as federated learning, which allows to build collaborative models performing the training locally in the edge devices, improving the efficiency and the privacy for training of machine learning models, as the data remains in the edge devices. However, in some IoT networks the connectivity between devices and system components can be limited, which prevents the use of federated learning, as it requires a central node to orchestrate the training of the model. To sidestep this, peer-to-peer learning appears as a promising solution, as it does not require such an orchestrator. On the other side, the security challenges in IoT deployments have fostered the use of machine learning for attack and anomaly detection. In these problems, under supervised learning approaches, the training datasets are typically imbalanced, i.e. the number of anomalies is very small compared to the number of benign data points, which requires the use of re-balancing techniques to improve the algorithms’ performance. In this paper, we propose a novel peer-to-peer algorithm,P2PK-SMOTE, to train supervised anomaly detection machine learning models in non-IID scenarios, including mechanisms to locally re-balance the training datasets via synthetic generation of data points from the minority class. To improve the performance in non-IID scenarios, we also include a mechanism for sharing a small fraction of synthetic data from the minority class across devices, aiming to reduce the risk of data de-identification. Our experimental evaluation in real datasets for IoT anomaly detection across a different set of scenarios validates the benefits of our proposed approach.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery , 2021. s. 153-163
Nyckelord [en]
federated learning, anomaly detection, non-IID data, imbalanced data
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-55437DOI: 10.1145/3448300.3467827ISBN: 978-1-4503-8349-3 (digital)OAI: oai:DiVA.org:ri-55437DiVA, id: diva2:1579106
Konferens
WiSec '21: Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks.28 June 2021- 2 July 2021
Tillgänglig från: 2021-07-08 Skapad: 2021-07-08 Senast uppdaterad: 2023-11-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Wang, HanEklund, DavidRaza, Shahid

Sök vidare i DiVA

Av författaren/redaktören
Wang, HanEklund, DavidRaza, Shahid
Av organisationen
DatavetenskapIndustriella system
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 278 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf