Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigating machine learning for fire sciences: literature review and examples
RISE Research Institutes of Sweden, Säkerhet och transport, Brandteknik.ORCID-id: 0000-0001-7524-0314
Bengt Dahlgren, Sweden.
Brandskyddslaget, Sweden.
RISE Research Institutes of Sweden, Säkerhet och transport, Brandteknik. (Brandforskning)ORCID-id: 0000-0002-0380-9548
2021 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

In this work, a review of current literature on artificial intelligence (AI) and more specifically machine learning (ML) is presented. ML is illustrated by two case studies where artificial neural networks are used for regression analysis of 110 spalling experiments and 81 Fire Dynamics Simulator (FDS) models of tunnel fires. Tunnel fires are often assessed by fire safety engineers using time-consuming simulation tools where a trained model has the potential to significantly reduce time and cost of these assessments.

A regression model based on a neural net is used to study small scale spalling experiments and similar accuracy compared to least-square fits are obtained. The result is a function based on 14 determining experimental parameters of spalling and result in, spalling times and depths. It is a relatively small effort to get started and set up models, comparably to regular curve fitting. In this first case study the training times are short, it is thus possible to establish how the model performs on average.

The 81 tunnel fire simulations are trained using a similar neural net however it takes considerable time to organize data, creating input, target data of the desired format and training. Here, it is also crucial to normalize the data in order to have it in a suitable format when training. 

It should be noted that ML is often an iterative process in such a way that it may be difficult to know what settings will work before starting the process. It is equally important to illustrate and get to know the data, e.g., if there are large differences or orders of magnitude differences in the data. A normalization procedure is most often practical and will give better predictions.

sted, utgiver, år, opplag, sider
Borås, 2021. , s. 36
Serie
RISE Rapport ; 2021:59
Emneord [en]
Machine learning, Fire Dynamics Simulator, Fire spalling
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-53512ISBN: 978-91-89385-49-8 (digital)OAI: oai:DiVA.org:ri-53512DiVA, id: diva2:1566827
Forskningsfinansiär
Brandforsk, 320-006Tilgjengelig fra: 2021-06-15 Laget: 2021-06-15 Sist oppdatert: 2023-06-07bibliografisk kontrollert

Open Access i DiVA

fulltext(1216 kB)554 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 1216 kBChecksum SHA-512
cc971ec0ba398d43d82bbde370349e3448a55c8c1f607be8e74b0427fb1cd818e7eb63225ffc126aa795cdda8457447ff3f6b1b01d2754ed53e82bc538b21c01
Type fulltextMimetype application/pdf

Person

Anderson, JohanMcNamee, Robert

Søk i DiVA

Av forfatter/redaktør
Anderson, JohanMcNamee, Robert
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 582 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 2185 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0