Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quality aspects in direct shear testing of rock joints
RISE Research Institutes of Sweden, Materials and Production, Applied Mechanics. KTH Royal Institute of Technology, Sweden.ORCID iD: 0000-0002-4551-5644
2021 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

The stability of rock masses is influenced by the occurrence of rock joints. Therefore, the shear strength of rock joints must be considered in dimensioning of underground constructions. One way to predict the shear strength is through usage of failure criteria, which are validated from results of direct shear tests under controlled laboratory conditions. Consequently, the quality of the results from the tests are crucial to the accuracy with which the criteria will be able to predict the shear strength. Since rock joints are unique by nature usage of replicas (man-made copies of rock joints) is of importance in parameter studies. The overall objective of this work is to facilitate the development of improved criteria for predictions of the shear strength of rock joints. To support this objective, two sources of uncertainty have been investigated, namely the geometry of replicas and the influence of the normal stiffness of test systems. Two quality assurance parameters for evaluation of geometrical differences between replicas and rock joints based on scanning data have been derived. The first parameter describes the morphological deviations. The second parameter describes the deviations in orientation with respect to the shear plane. The effective normal stiffness approach, which compensates for the influence of the normal stiffness of the test system in direct shear testing, has been developed, validated, and applied. With help of the quality assurance parameters it is demonstrated that it is possible to reproduce replicas within narrow tolerances. Application of the effective normal stiffness approach basically eliminates the normal load error. In all, the results support generation of improved quality of test data and consequently, the development of shear strength criteria with improved accuracy will also be facilitated.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021.
Series
KTH Licentiate Thesis in Civil and Architectural Engineering
Keywords [en]
rock joints, geometrical quality assurance, replicas, direct shear testing, normal stiffness.
National Category
Other Civil Engineering
Identifiers
URN: urn:nbn:se:ri:diva-53005ISBN: 978-91-7873-872-4 (electronic)OAI: oai:DiVA.org:ri-53005DiVA, id: diva2:1555067
Note

Academic Dissertation which, with due permission of the KTH Royal Institute of  Technology, is submitted for public defence for the Degree of Licentiate of Engineering on Wednesday the 9th June 2021, at 9:00 a.m. in M108, Brinellvägen 23, Stockholm.

Paper A: Larsson J, Flansbjer M, Portal N W, Johnson E, Johansson F, and Mas Ivars D. (2020) Geometrical Quality Assurance of Rock Joint Replicas in Shear Tests – Introductory Analysis. Paper presented at the ISRM International Symposium - EUROCK 2020, physical event not held. https://onepetro.org/ISRMEUROCK/proceedings-abstract/EUROCK20/All-EUROCK20/ISRM-EUROCK-2020-101/451187  In Diva: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-51987 

Paper B: Larsson J, Johansson F, Mas Ivars D, Johnson E, Flansbjer M and Portal N W. (2021) Rock joint replicas in direct shear testing – Part 1: Extraction of geometrical quality assurance parameters. To be submitted to Rock Mechanics and Rock Engineering  In DiVA: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-53111 

Paper C: Larsson J and Flansbjer M. (2020) An Approach to Compensate for the Influence of the System Normal Stiffness in CNS Direct Shear Tests. Rock Mechancis and Rock Engineering 53, 2185–2199 https://doi.org/10.1007/s00603-020-02051-0  In DiVA: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-44085  

Paper D: Larsson J. (2021) Experimental investigation of the system normal stiffness of a 5 MN direct shear test setup and the compensation of it in CNS direct shear tests. Submitted to ISRM International Symposium - EUROCK 2021  In DiVA: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-53112 

Available from: 2021-05-18 Created: 2021-05-17 Last updated: 2023-05-23Bibliographically approved

Open Access in DiVA

fulltext(1202 kB)206 downloads
File information
File name FULLTEXT01.pdfFile size 1202 kBChecksum SHA-512
b971d2e84fcc43ad7e88ac40b9d2e7d33082998c03f4ca6cf6343c21fd719d6fe9ab75ccf914f89cf529a0906781e37e4c3c05c5315c93915da108868e75304d
Type fulltextMimetype application/pdf

Authority records

Larsson, Jörgen

Search in DiVA

By author/editor
Larsson, Jörgen
By organisation
Applied Mechanics
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 206 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 260 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf