Biofabrication of Nanocellulose–Mycelium Hybrid MaterialsShow others and affiliations
2021 (English)In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 5, no 2, article id 2000196Article in journal (Refereed) Published
Abstract [en]
Healthy material alternatives based on renewable resources and sustainable technologies have the potential to disrupt the environmentally damaging production and consumption practices established throughout the modern industrial era. In this study, a mycelium–nanocellulose biocomposite with hybrid properties is produced by the agitated liquid culture of a white-rot fungus (Trametes ochracea) with nanocellulose (NC) comprised as part of the culture media. Mycelial development proceeds via the formation of pellets, where NC is enriched in the pellets and depleted from the surrounding liquid media. Micrometer-scale NC elements become engulfed in mycelium, whereas it is hypothesized that the nanometer-scale fraction becomes integrated within the hyphal cell wall, such that all NC in the system is essentially surface-modified by mycelium. The NC confers mechanical strength to films processed from the biocomposite, whereas the mycelium screens typical cellulose–water interactions, giving fibrous slurries that dewater faster and films that exhibit significantly improved wet resistance in comparison to pure NC films. The mycelium–nanocellulose biocomposites are processable in the ways familiar to papermaking and are suggested for diverse applications, including packaging, filtration, and hygiene products.
Place, publisher, year, edition, pages
Wiley-VCH Verlag , 2021. Vol. 5, no 2, article id 2000196
Keywords [en]
biocomposite, cellulose nanocrystals, cellulose nanofibrils, mycelium, white-rot fungi, Cellulose, Cellulose films, Composite materials, Fungi, Nanocellulose, Pelletizing, Diverse applications, Hygiene products, Nano-meter scale, Production and consumption, Renewable resource, Surface-modified, Sustainable technology, Water interactions, Hybrid materials
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-51216DOI: 10.1002/adsu.202000196Scopus ID: 2-s2.0-85096745923OAI: oai:DiVA.org:ri-51216DiVA, id: diva2:1514190
2021-01-042021-01-042023-11-13Bibliographically approved