Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Machine Learning to Enrich Building Databases—Methods for Tailored Energy Retrofits
RISE Research Institutes of Sweden, Samhällsbyggnad, Systemomställning och tjänsteinnovation. Lund University, Sweden.ORCID-id: 0000-0001-7568-3334
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.ORCID-id: 0000-0002-9860-4472
Lund University, Sweden.
Lund University, Sweden.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Energies, E-ISSN 1996-1073, Vol. 13, nr 10Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Building databases are important assets when estimating and planning for national energy savings from energy retrofitting. However, databases often lack information on building characteristics needed to determine the feasibility of specific energy conservation measures. In this paper, machine learning methods are used to enrich the Swedish database of Energy Performance Certificates with building characteristics relevant for a chosen set of energy retrofitting packages. The study is limited to the Swedish multifamily building stock constructed between 1945 and 1975, as these buildings are facing refurbishment needs that advantageously can be combined with energy retrofitting. In total, 514 ocular observations were conducted in Google Street View of two building characteristics that were needed to determine the feasibility of the chosen energy retrofitting packages: (i) building type and (ii) suitability for additional façade insulation. Results showed that these building characteristics could be predicted with an accuracy of 88.9% and 72.5% respectively. It could be concluded that machine learning methods show promising potential to enrich building databases with building characteristics relevant for energy retrofitting, which in turn can improve estimations of national energy savings potential.

Ort, förlag, år, upplaga, sidor
MDPI, 2020. Vol. 13, nr 10
Nyckelord [en]
building database enrichment, machine learning, artificial intelligence, Google Street View, energy performance certificate, support vector machine, energy retrofitting, energy transition, building-specific information, long-term renovation strategy
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-44988DOI: 10.3390/en13102574OAI: oai:DiVA.org:ri-44988DiVA, id: diva2:1431292
Anmärkning

(This article belongs to the Special Issue Energy Performance of Buildings)

Tillgänglig från: 2020-05-19 Skapad: 2020-05-19 Senast uppdaterad: 2023-08-28Bibliografiskt granskad

Open Access i DiVA

fulltext(6875 kB)475 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6875 kBChecksumma SHA-512
22b64e3e5e7bfbe2093f869a44e49e4f2b8554fa27452b64192da7bd435a240839223d5a1453235b38db254e95f64fbbf76c2d9f357ac0728aa73fdc9ea86c53
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

von Platten, JennySandels, ClaesMangold, MikaelMjörnell, Kristina

Sök vidare i DiVA

Av författaren/redaktören
von Platten, JennySandels, ClaesMangold, MikaelMjörnell, Kristina
Av organisationen
Systemomställning och tjänsteinnovationMätteknikSäkerhet och transport
I samma tidskrift
Energies
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 476 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 288 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf