Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of Scanning Kelvin Probe in the Study of Protective Paints
RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. (Institut de la Corrosion)
RISE - Research Institutes of Sweden (2017-2019), Materials and Production, KIMAB. (Institut de la Corrosion)ORCID iD: 0000-0001-5462-2700
2019 (English)In: Frontiers in Materials, ISSN 2296-8016, Vol. 6, article id 192Article in journal (Refereed) Published
Abstract [en]

Industrial coatings are composed of layers of different polymers (top coats, primers) containing pigments, corrosion inhibitors, and fillers as well as additives. For corrosion protection, it is vitally important to preserve the strong adhesion and long-term stability of the metal-polymer interface in corrosive environments. In recent decades, the performance of painted materials increased, which requires the application of advanced methods for quick assessing, ranking and predicting corrosion stability. Scanning Kelvin probe (SKP) is a highly sensitive and non-invasive technique to analyze in situ the metal-polymer interface of high-performance industrial coatings. SKP is able to monitor the adhesion and corrosion underneath different kinds of paints without the need for long-term corrosion tests. SKP is a localized electrochemical technique with a spatial resolution in the range of 70–100 μm. Hence, it is possible to obtain information about the intact and corroding portions of the interface at defect sites, corrosion blisters, contaminants, and intermetallics, quality of pretreatments, and the development of galvanic couples that lead to corrosion de-adhesion of the polymeric coatings. This article reviews the application of SKP to the determination of the mechanisms of corrosion de-adhesion of model paints, thick marine paints, coatings with zinc rich primers, automotive paints, and coil coatings applied on galvanized steel substrates. © Copyright © 2019 Nazarov and Thierry.

Place, publisher, year, edition, pages
Frontiers Media S.A. , 2019. Vol. 6, article id 192
Keywords [en]
adhesion, corrosion protection, pigments, polymeric coatings, pretreatments, SKP
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-40460DOI: 10.3389/fmats.2019.00192Scopus ID: 2-s2.0-85072728871OAI: oai:DiVA.org:ri-40460DiVA, id: diva2:1359941
Available from: 2019-10-10 Created: 2019-10-10 Last updated: 2023-05-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Thierry, Dominique

Search in DiVA

By author/editor
Thierry, Dominique
By organisation
KIMAB
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf