Fires on RoPax ships can be very challenging and may inflict serious damage both to life,environment and property. The SEBRA project explored two different research themesthrough interviews and observations on four larger RoPax ships – firstly, the interactionbetween the crew, installations and environments relevant for fire protection, secondly,what governs the design of fire protective installations and working environmentsonboard.The study shows that proactive fire safety is a continuous process where the crews appliesmany different types of knowledge and experience. Several of the success factors identifiedin the study can be linked to prior research on resilient performance in critical operationsi.e. properties that allow people to deal with problems that are surprising and donot fully match existing routines.Key factors for good performance in the case of fire are good working conditions andeffective training, meaning working environments, systems, organizations and routinesthat fit the needs of the crew. However, the present study shows that a holistic approachis rarely applied to fire safety. Safety Management has a reactive bias, a clear focus oncompliance and pays limited attention to usability as a driver for safety. Observationsresulted in several findings of poor design that could undermine performance in the caseof a real fire.Flaws in fire safety design can be traced to the overall processes of ship design, buildingand revision. Ship design is a processed closely focused on cost and technical demands,rarely concerned with user needs and characteristics. When the fire protection consultantbecomes involved, many important design parameters are normally fixed and thereis little room for user-oriented fire installations and concerns.Future research is needed to strengthen shipping company learning processes and to giveusability a more prominent role in maritime Safety Management. There is also a need ofresearch demonstrating how usability can be integrated as a key value in ship design.