Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ammonia emissions from storage: non-digested and digested cattle slurry, with and without acid
RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.ORCID iD: 0000-0002-3333-2162
RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.
RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.ORCID iD: 0009-0001-7341-1893
RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Agrifood and Bioscience.ORCID iD: 0000-0002-2036-6320
2019 (English)Report (Other academic)Alternative title
Ammoniakavgång från flytgödsellager : orötad och rötadnötflygödsel, med och utan surgörning (Swedish)
Abstract [en]

The study concerns acidification at the beginning of storage to reduce ammonia emissions during storage. The aim of the study was to evaluate the reduction of ammonia emissions by the acidification of cattle slurry, digested and non-digested, in storage under summer conditions.

Cattle slurry (CS) and digested cattle slurry (DCS) were taken from a dairy farm with a digester plant. The sulphuric acid required for acidification to pH 5.5 was determined by titration before the pilot-scale experiment began. In the pilot-scale experiment, each slurry type was divided into two containers. One batch was acidified to pH<5.5 by adding sulphuric acid (96%) slowly with gentle mixing. The other batch was not acidified. During acidification, the pH was measured frequently and the total amounts of acid added were noted. Temperatures were measured during the four-month storage period with loggers at 0.1 m from the bottom and 0.1 m from the surface of each container. Data were continuously recorded hourly.

Ammonia emissions were measured using a micrometeorological mass balance method with passive flux samplers. There were five measuring periods during the warm storage period from May to August. The length of the measuring periods ranged from 3 to 14 days, with the shortest period at the start of storage.

On a pilot scale, the acid consumption for reaching pH< 5.5 was 1.1 L/m3 for CS and 6.2 L/m3 for DCS. The change in pH after acidification was rather limited and the pH stayed <6 throughout the four-month storage period for both CS and DCS.

On a laboratory scale, more acid was needed to reach pH 5.5, and the pH increased more, with less buffering, than on a pilot scale. The reasons for this could be higher temperatures, frequent mixing, small volumes, and the use of diluted acid on a laboratory scale compared with on a pilot scale. On a laboratory scale, it was possible to show differences in acid demand between slurry types, but the amounts of acid needed seem to be different (higher) compared with pilot scale.

The estimated cumulative NH3-N emissions corresponded to about 19% of total-N for CS and about 26% of total-N for DCS. The estimated cumulative NH3-N emissions were about the same as a percentage of TAN for CS and for DCS (57.8 and 53.9% respectively).

Emissions from the acidified batches of slurry were overall negligibly low. The addition of acid decreased ammonia emissions very effectively, for both CS and DCS.

Abstract [sv]

Denna studie handlar om hur surgörning av flytgödsel vid start av lagringen kan minska ammoniakavgången under lagringsperioden maj till augusti. Målet var att bestämma minskningen av ammoniakavgången genom att surgöra nötflytgödsel, både orötad och rötad och se effekten jämfört med gödsel utan syratillsats.

Flytgödsel (CS) och rötad nötflytgödsel (DCS) hämtades från en mjölkkogård med en biogasanläggning. För att få ett riktvärde för den syramängd som skulle åtgå för att sänka pH hos respektive gödseltyp till 5,5, utfördes titreringar i laboratorium innan uppstart av lagringsförsöket i pilotskala. Lagrings­anläggningen bestod av fyra behållare á 3 m3. Vid fyllningen av lagren, delades varje gödselslag upp mellan två behållare, varav det i en av behållarna tillsattes svavelsyra (96 %-ig) samtidigt som gödseln rördes om försiktigt med en eldriven propeller. Den andra behållaren rördes om också men utan tillsats av syra. Under syratillsättningen mättes pH vid upprepade tillfällen och totala mängden syra noterades. Gödseln lagrades under fyra månader från maj till augusti samtidigt som gödseltemperaturen registerades på två nivåer i varje behållare, vid gödsel­ytan och nära botten, och temperaturvärdena registrerades varje timme.

Under lagringen mättes ammoniakavgången med en mikrometeorologisk massbalansmetod med passiva fluxprovtagare. Fluxprovtagarna var monterade på master runt varje behållare under exponeringen. Totalt var det fem mät­perioder, som varade 3 till 14 dagar, med den kortaste perioden direkt efter fyllningen i maj.

För att sänka pH till 5,5 åtgick 1,1 liter per m3 för CS och 6,2 liter  per m3 för DCS. Under lagringen steg pH hos de surgjorda gödselslagen obetydligt och låg i slutet av lagringen på pH mindre än 6 hos båda gödselslagen. Vid titreringen i laboratorium före start av lagringsförsöket behövdes det betydligt mer syra för att nå pH 5,5 än i pilotskalan. Orsaker till det kan vara att i laboratoriet var temperaturen högre, gödselvolymerna små, gödseln blandades om ofta, samt att vid titreringen användes utspädd syra. Men även i laboratorieskalan var det stora skillnader mellan CS och DCS i syraförbrukning, så titrering kan användas som en grov uppskattning och för att se skillnader mellan olika gödselslags syrabehov. Däremot kan det vara svårt att förutse behovet av mer exakta syramängder i större skala.

Totalt uppskattades den kumulativa ammoniakavgången i kvävemängd uppgå till ca 19 % av totala kväveinnehållet hos nötflytgödsel (CS) och 26 % av kväve­innehållet i den rötade gödseln (DCS) när ingen syra hade tillsatts.  Motsvarande siffror i procent av innehållet av det lättlösliga ammoniumkvävet var 57,8 % för CS och 53,9 % för DCS.

Ammoniakavgången från den surgjorda CS och DCS gödseln var mycket liten och i stort negligerbar. Det betyder att tillsats av syra minskade ammonia-kavgången mycket effektivt, både för CS och DCS.

Place, publisher, year, edition, pages
2019. , p. 25
Series
RISE Rapport ; 2019:51
Keywords [en]
acidified slurry, ammonia emissions, storage, acid demand
Keywords [sv]
surgjord flytgödsel, ammoniakavgång, lagring, syrabehov
National Category
Environmental Sciences related to Agriculture and Land-use
Identifiers
URN: urn:nbn:se:ri:diva-38340ISBN: 978-91-88907-79-0 (electronic)OAI: oai:DiVA.org:ri-38340DiVA, id: diva2:1314411
Funder
Interreg Baltic Sea RegionAvailable from: 2019-05-08 Created: 2019-05-08 Last updated: 2024-07-28Bibliographically approved

Open Access in DiVA

fulltext(3599 kB)358 downloads
File information
File name FULLTEXT01.pdfFile size 3599 kBChecksum SHA-512
7d8e9a86ba92b1f4a98887021ebcefe1712d73d4ba68f10b4ff6ab02b54fd69241760592d31be5ff693c1a8d75d43f6e109dff5e9ec91126a0a87b6905efd620
Type fulltextMimetype application/pdf

Authority records

Rodhe, LenaTersmeden, MariannePizzul, Leticia

Search in DiVA

By author/editor
Rodhe, LenaTersmeden, MariannePizzul, Leticia
By organisation
Agrifood and Bioscience
Environmental Sciences related to Agriculture and Land-use

Search outside of DiVA

GoogleGoogle Scholar
Total: 358 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 266 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf