Incremental hole drilling for residual stress measurement are widely used in industrytoday and is considered to be a cheap and fairly reliable method for stress measurements. Eventhough the method assumes isotropic material, it has been expanded to orthotropic materials suchas composite laminates. With heterogeneous material like grey cast iron, the reliability andaccuracy of the method still often fails to provide residual stress data valid for analysis. Cast ironmicrostructural aspects that complicate the analysis are the graphite and its morphology,variations in matrix structures and casting defects. These features can extend over differentlength scales and give cast iron highly localised mechanical properties. Global engineeringparameters, such as Young’s modulus and Poisson’s ratio, are used together with the locallymeasured strains to calculate the residual stresses. Utilizing global material parameters whilemeasuring locally can provide false stress results. Grey cast iron exhibits a non-linear elasticbehaviour and the Young’s modulus can change significantly and can therefore result in verydifferent calculated residual stresses. Experiments were conducted on cast stress lattices utilizingincremental hole drilling to measure strains. To calculate the residual stresses, global materialparameters and standard evaluation procedures in accordance to ASTM E837 were used. Resultsshow that the method is questionable for grey cast iron but can be used for ductile iron. Lack ofmaterial properties knowledged are suggested to be the main obstacle for residual stressevaluations on grey cast iron as the accuracy of the method decreases as hole depth approaches 1mm.