System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrical performance of directly attached SiC power MOSFET bare dies in a half-bridge configuration
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
RISE - Research Institutes of Sweden, ICT, Acreo.
2017 (English)In: 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, IFEEC - ECCE Asia 2017, 2017, p. 417-421Conference paper, Published paper (Refereed)
Abstract [en]

The demand for high-efficiency power converters is increasing continuously. The switching losses are typically significant in power converters. During the switching time, the component is exposed to a considerable voltage and current causing power loss. The switching time is limited by parasitic inductance produced by traces and interconnections inside and outside the package of a device. Moreover, the parasitic inductances at the input-terminal together with the Miller capacitance generate oscillations causing instability and additional losses. In order to eliminate the package parasitic inductance, four 1.2kV SiC-MOSFET bare dies, two in parallel in each position, were directly attached to a PCB sandwich designed as a half bridge. The obtained structure forms a planar power module. From ANSYS Q3D simulations it was found that the parasitic inductance between drain and source for each transistor in the proposed planar module could be reduced 92 % compared to a TO247 package. The planar module was also tested as a dc-dc converter. Switching waveforms from these experiments are also presented

Place, publisher, year, edition, pages
2017. p. 417-421
Keywords [en]
bare die, converter, fast switching, low inductive circuit, parasitic inductance, planar Module, SiC MOSTEF, Capacitance, DC-DC converters, Electric inverters, Inductance, MOSFET devices, Power converters, Printed circuit boards, Silicon carbide, Silicon compounds, Switching, Bare dies, Inductive circuits, Parasitic inductances, Power MOSFET
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33138DOI: 10.1109/IFEEC.2017.7992074Scopus ID: 2-s2.0-85034023937ISBN: 9781509051571 (print)OAI: oai:DiVA.org:ri-33138DiVA, id: diva2:1179089
Conference
3rd IEEE International Future Energy Electronics Conference and ECCE Asia, IFEEC - ECCE Asia 2017, 3 June 2017 through 7 June 2017
Available from: 2018-01-31 Created: 2018-01-31 Last updated: 2018-01-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
By organisation
Acreo
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf