Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Absence of conformational change in complement factor 3 and factor XII adsorbed to acrylate polymers is related to a high degree of polymer backbone flexibility
Uppsala University, Sweden.
University of Gothenburg, Sweden.
Linnaeus University, Sweden.
Linnaeus University, Sweden.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Biointerphases, ISSN 1934-8630, E-ISSN 1559-4106, Vol. 12, nr 2, artikkel-id 02D417Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In previous investigations, the authors have examined the adsorption of albumin, immunoglobulin, and fibrinogen to a series of acrylate polymers with different backbone and side-group flexibility. The authors showed that protein adsorption to acrylates with high flexibility, such as poly(lauryl methacrylate) (PLMA), tends to preserve native conformation. In the present study, the authors have continued this work by examining the conformational changes that occur during the binding of complement factor 3 (C3) and coagulation factor XII (FXII). Native C3 adsorbed readily to all solid surfaces tested, including a series of acrylate surfaces of varying backbone flexibility. However, a monoclonal antibody recognizing a "hidden" epitope of C3 (only exposed during C3 activation or denaturation) bound to the C3 on the rigid acrylate surfaces or on polystyrene (also rigid), but not to C3 on the flexible PLMA, indicating that varying degrees of conformational change had occurred with binding to different surfaces. Similarly, FXII was activated only on the rigid poly(butyl methacrylate) surface, as assessed by the formation of FXIIa-antithrombin (AT) complexes; in contrast, it remained in its native form on the flexible PLMA surface. The authors also found that water wettability hysteresis, defined as the difference between the advancing and receding contact angles, was highest for the PLMA surface, indicating that a dynamic change in the interface polymer structure may help protect the adsorbed protein from conformational changes and denaturation.

sted, utgiver, år, opplag, sider
2017. Vol. 12, nr 2, artikkel-id 02D417
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-30900DOI: 10.1116/1.4985698Scopus ID: 2-s2.0-85021073944OAI: oai:DiVA.org:ri-30900DiVA, id: diva2:1138621
Merknad

 Funding details: VR, Vetenskapsrådet; Funding text: The authors wish to thank Deborah McClellan for much appreciated editorial assistance and the authors appreciate Pentti Tengvall for valuable discussions during the preparation of this work. This work was supported by grants from the European Community's Seventh Framework Program under Grant Agreement No. 602699 (DIREKT), the Swedish Research Council (VR), and faculty grants from the Linnaeus University.

Tilgjengelig fra: 2017-09-06 Laget: 2017-09-06 Sist oppdatert: 2023-05-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttp://avs.scitation.org/doi/pdf/10.1116/1.4985698

Person

Berglin, Mattias

Søk i DiVA

Av forfatter/redaktør
Berglin, Mattias
Av organisasjonen
I samme tidsskrift
Biointerphases

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 53 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0