Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The application of data mining techniques to model visual distraction of bicyclists
RISE., Swedish ICT, Viktoria. (Kooperativa System)ORCID-id: 0000-0002-1043-8773
RISE., Swedish ICT, Viktoria.
RISE., Swedish ICT, Viktoria.ORCID-id: 0000-0003-0709-4954
2016 (Engelska)Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 52, s. 99-107Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a novel approach to modelling visual distraction of bicyclists. A unique bicycle simulator equipped with sensors capable of capturing the behaviour of the bicyclist is presented. While cycling two similar scenario routes, once while simultaneously interacting with an electronic device and once without any electronic device, statistics of the measured speed, head movements, steering angle and bicycle road position along with questionnaire data are captured. These variables are used to model the self-assessed distraction level of the bicyclist. Data mining techniques based on random forests, support vector machines and neural networks are evaluated for the modelling task. Out of the total 71 measured variables a variable selection procedure based on random forests is able to select a fraction of those and consequently improving the modelling performance. By combining the random forest-based variable selection and support vector machine-based modelling technique the best overall performance is achieved. The method shows that with a few observable variables it is possible to use machine learning to model, and thus predict, the distraction level of a bicyclist.

Ort, förlag, år, upplaga, sidor
2016. Vol. 52, s. 99-107
Nyckelord [en]
Automated driving systems, Bicycle simulator, Bicyclist distraction, Data mining, Random forest, Support vector machine
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:ri:diva-27848DOI: 10.1016/j.eswa.2016.01.006Scopus ID: 2-s2.0-84956877709OAI: oai:DiVA.org:ri-27848DiVA, id: diva2:1064125
Tillgänglig från: 2017-01-11 Skapad: 2017-01-11 Senast uppdaterad: 2020-02-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Englund, CristoferVoronov, Alexey

Sök vidare i DiVA

Av författaren/redaktören
Englund, CristoferVoronov, Alexey
Av organisationen
Viktoria
I samma tidskrift
Expert systems with applications
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 41 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10