Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Preparation and analysis of multiple source industrial process data
RISE., Swedish ICT, SICS, Decisions, Networks and Analytics lab.ORCID-id: 0000-0001-8952-3542
RISE., Swedish ICT, SICS, Decisions, Networks and Analytics lab.ORCID-id: 0000-0002-9331-0352
RISE - Research Institutes of Sweden (2017-2019), ICT, SICS.ORCID-id: 0000-0002-5025-7627
RISE., Swedish ICT, SICS, Decisions, Networks and Analytics lab.ORCID-id: 0000-0003-3909-6751
2005 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Industrial process data is often stored in a wide variety of formats and in several different repositories. Efficient methodologies and tools for data preparation and merging are critical for efficient analysis of such data. Experience shows that data analysis projects involving industrial data often spend the major part of their effort on these tasks, leaving little room for model development and generating applications. This paper identifies and classifies the needs and individual steps in data preparation of industrial data. A methodology for data preparation specifically suited for the domain is proposed and a practically useful set of primitive operations to support the methodology is defined. Finally, a proof of concept data preparation system implementing the proposed operations and a scripting facility to support the iterations in the methodology is presented along with a discussion of necessary and desirable properties of such a tool.

Ort, förlag, år, upplaga, sidor
Swedish Institute of Computer Science , 2005, 1. , s. 25
Serie
SICS Technical Report, ISSN 1100-3154 ; 2005:10
Nyckelord [en]
Data Preparation Methodology, Multiple Source Data Merging, Data Analysis, Data Mining, Data Cleaning, Data Preprocessing
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-22089OAI: oai:DiVA.org:ri-22089DiVA, id: diva2:1041631
Tillgänglig från: 2016-10-31 Skapad: 2016-10-31 Senast uppdaterad: 2020-12-02Bibliografiskt granskad

Open Access i DiVA

fulltext(340 kB)74 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 340 kBChecksumma SHA-512
6a34cc64f0aaffbe7ef514b6f02e60bbac13e586c69801c0498f628a5314c2dc173e7fe722b258716ecb77dd65953cb5506b8d47510a137b0b46ba1a7d876030
Typ fulltextMimetyp application/pdf

Person

Gillblad, DanielKreuger, PerRudström, Åsa

Sök vidare i DiVA

Av författaren/redaktören
Gillblad, DanielKreuger, PerLevin, BjörnRudström, Åsa
Av organisationen
Decisions, Networks and Analytics labSICS
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 74 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 67 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf