Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of nonlinear forces acting on floating bodies using machine learning
RISE Research Institutes of Sweden, Säkerhet och transport, Maritima avdelningen. Aalborg University, Denmark.ORCID-id: 0000-0001-6934-634x
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0003-3272-4145
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-8577-6745
Sigma Energy & Marine, Sweden.
2023 (Engelska)Ingår i: Advances in the Analysis and Design of Marine Structures / [ed] J. W. Ringsberg, C. Guedes Soares, Boca Raton: CRC Press, 2023, s. 63-72Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Abstract [en]

Numerical models used in the design of floating bodies routinely rely on linear hydrodynamics. Extensions for hydrodynamic nonlinearities can be approximated using e.g. Morison type drag and nonlinear Froude-Krylov forces. This paper aims to improve the approximation of nonlinear forces acting on floating bodies by using machine learning (ML). Many ML models are general function approximators and therefore suitable for representing such nonlinear correction terms. A hierarchical modelling approach is used to build mappings between higher-fidelity simulations and the linear method. The ML corrections are built up for FNPF, Euler and RANS simulations. Results for decay tests of a sphere in model scale using recurrent neural networks (RNN) are presented. The RNN algorithm is shown to satisfactory predict the correction terms if the most nonlinear case is used as training data. No difference in the performance of the RNN model is seen for the different hydrodynamic models.

Ort, förlag, år, upplaga, sidor
Boca Raton: CRC Press, 2023. s. 63-72
Nationell ämneskategori
Marinteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-72114DOI: 10.1201/9781003399759ISBN: 9781003399759 (digital)OAI: oai:DiVA.org:ri-72114DiVA, id: diva2:1842078
Forskningsfinansiär
Energimyndigheten, 50196-1Tillgänglig från: 2024-03-02 Skapad: 2024-03-02 Senast uppdaterad: 2025-02-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Eskilsson, ClaesPashami, SepidehHolst, Anders

Sök vidare i DiVA

Av författaren/redaktören
Eskilsson, ClaesPashami, SepidehHolst, Anders
Av organisationen
Maritima avdelningenDatavetenskap
Marinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf