Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An automated machine learning approach for smart waste management systems
BnearIT AB, Sweden.
Luleå University of Technology, Sweden.ORCID-id: 0000-0002-6032-6155
BnearIT AB, Sweden.
2020 (Engelska)Ingår i: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 16, nr 1, s. 384-392, artikel-id 8709695Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from 86.8% and 47.9% to 99.1% and 98.2%, respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers. 

Ort, förlag, år, upplaga, sidor
IEEE Computer Society , 2020. Vol. 16, nr 1, s. 384-392, artikel-id 8709695
Nyckelord [en]
Automated machine learning (AutoML), classification algorithms, data mining, emptying detection, grid search, Smart Waste Management, Automation, Classification (of information), Containers, Decision trees, Machine learning, Recycling, Waste management, Automated machines, Binary classification, Classification accuracy, Classification algorithm, Conventional machines, Random forest classifier, Waste management systems, Learning algorithms
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-68358DOI: 10.1109/TII.2019.2915572Scopus ID: 2-s2.0-85078311758OAI: oai:DiVA.org:ri-68358DiVA, id: diva2:1817596
Tillgänglig från: 2023-12-06 Skapad: 2023-12-06 Senast uppdaterad: 2023-12-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kleyko, Denis

Sök vidare i DiVA

Av författaren/redaktören
Kleyko, Denis
I samma tidskrift
IEEE Transactions on Industrial Informatics
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 28 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf