Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Making Sense of Failure Logs in an Industrial DevOps Environment
RISE Research Institutes of Sweden, Digitala system, Industriella system. Mälardalens University, Sweden. (Smart Industrial Automation)ORCID-id: 0000-0001-6418-9971
Mälardalens University, Sweden.
RISE Research Institutes of Sweden.ORCID-id: 0000-0003-3354-1463
RISE Research Institutes of Sweden.ORCID-id: 0000-0002-1512-0844
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Advances in Intelligent Systems and Computing book series (AISC,volume 1445): 20th International Conference on Information Technology New Generations, Springer International Publishing , 2023, Vol. 1445, s. 217-226Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Processing and reviewing nightly test execution failure logs for large industrial systems is a tedious activity. Furthermore, multiple failures might share one root/common cause during test execution sessions, and the review might therefore require redundant efforts. This paper presents the LogGrouper approach for automated grouping of failure logs to aid root/common cause analysis and for enabling the processing of each log group as a batch. LogGrouper uses state-of-art natural language processing and clustering approaches to achieve meaningful log grouping. The approach is evaluated in an industrial setting in both a qualitative and quantitative manner. Results show that LogGrouper produces good quality groupings in terms of our two evaluation metrics (Silhouette Coefficient and Calinski-Harabasz Index) for clustering quality. The qualitative evaluation shows that experts perceive the groups as useful, and the groups are seen as an initial pointer for root cause analysis and failure assignment.

Ort, förlag, år, upplaga, sidor
Springer International Publishing , 2023. Vol. 1445, s. 217-226
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-67432OAI: oai:DiVA.org:ri-67432DiVA, id: diva2:1800981
Konferens
20th International Conference on Information Technology New Generations
Tillgänglig från: 2023-09-28 Skapad: 2023-09-28 Senast uppdaterad: 2023-10-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Full text

Person

Abbas, MuhammadHelali Moghadam, MahshidSaadatmand, Mehrdad

Sök vidare i DiVA

Av författaren/redaktören
Abbas, MuhammadHelali Moghadam, MahshidSaadatmand, Mehrdad
Av organisationen
Industriella systemRISE Research Institutes of Sweden
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 84 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf