Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Westermo network traffic data set
Westermo Network Technologies AB, Sweden.
Westermo Network Technologies AB, Sweden.
RISE Research Institutes of Sweden, Digitala system, Industriella system. Mälardalen University, Sweden.ORCID-id: 0000-0001-5332-1033
Mälardalen University, Sweden.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Data in Brief, E-ISSN 2352-3409, Vol. 50, artikel-id 109512Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

There is a growing body of knowledge on network intrusion detection, and several open data sets with network traffic and cyber-security threats have been released in the past decades. However, many data sets have aged, were not collected in a contemporary industrial communication system, or do not easily support research focusing on distributed anomaly detection. This paper presents the Westermo network traffic data set, 1.8 million network packets recorded in over 90 minutes in a network built up of twelve hardware devices. In addition to the raw data in PCAP format, the data set also contains pre-processed data in the form of network flows in CSV files. This data set can support the research community for topics such as intrusion detection, anomaly detection, misconfiguration detection, distributed or federated artificial intelligence, and attack classification. In particular, we aim to use the data set to continue work on resource-constrained distributed artificial intelligence in edge devices. The data set contains six types of events: harmless SSH, bad SSH, misconfigured IP address, duplicated IP address, port scan, and man in the middle attack.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023. Vol. 50, artikel-id 109512
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-66502DOI: 10.1016/j.dib.2023.109512OAI: oai:DiVA.org:ri-66502DiVA, id: diva2:1794460
Tillgänglig från: 2023-09-05 Skapad: 2023-09-05 Senast uppdaterad: 2024-05-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Dehlaghi Ghadim, AlirezaHelali Moghadam, Mahshid

Sök vidare i DiVA

Av författaren/redaktören
Dehlaghi Ghadim, AlirezaHelali Moghadam, Mahshid
Av organisationen
Industriella systemDatavetenskap
I samma tidskrift
Data in Brief
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 164 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf