Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic Voting based Explainable Intrusion Detection System for In-vehicle Network
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0002-8511-6867
RISE Research Institutes of Sweden.
2022 (Engelska)Ingår i: 2022 24th International Conference on Advanced Communication Technology (ICACT) 13-16 Feb. 2022, 2022, nr 24th International Conference on Advanced Communication Technology (ICACT) - Artificial Intelligence Technologies toward Cybersecurity, s. 406-Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Abstract [en]

A modern vehicle contains a large number of electronic components communicating over a large in-vehicle network. While the operation of this network is crucial, some implementations are vulnerable to a number of security attacks while lacking sufficient security measures. Intrusion detection systems have been proposed as a possible solution to this, with those using machine learning receiving much attention. However, such systems may be hard to interpret and understand. In this work, we propose an automotive intrusion detection system that utilizes Random Forest with a dynamic voting technique to provide a robust solution with interpretability through feature and model exploration. The proposed solution is evaluated using two publicly available datasets and demonstrates stable performance when compared to similar solutions.

Ort, förlag, år, upplaga, sidor
2022. nr 24th International Conference on Advanced Communication Technology (ICACT) - Artificial Intelligence Technologies toward Cybersecurity, s. 406-
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-62471DOI: 10.23919/ICACT53585.2022ISBN: 979-11-88428-09-0 (digital)OAI: oai:DiVA.org:ri-62471DiVA, id: diva2:1730435
Konferens
2022 24th International Conference on Advanced Communication Technology (ICACT) 13-16 Feb. 2022
Tillgänglig från: 2023-01-24 Skapad: 2023-01-24 Senast uppdaterad: 2024-07-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Rosell, Joakim

Sök vidare i DiVA

Av författaren/redaktören
Rosell, Joakim
Av organisationen
Mobilitet och systemRISE Research Institutes of Sweden
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 231 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf