Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Systematic Evaluation of Automotive Intrusion Detection Datasets
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0002-9587-3423
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.
2022 (Engelska)Ingår i: Proceedings of the 6th ACM Computer Sciencein Cars Symposium (CSCS ’22), December 8, 2022, Ingolstadt, Germany. ACM,New York, NY, USA, Association for Computing Machinery , 2022, artikel-id 2Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Some current and next generation security solutions employ machine learning and related technologies. Due to the nature of these applications, correct use of machine learning can be critical. One area that is of particular interest in this regard is the use of appropriate data for training and evaluation. In this work, we investigate different characteristics of datasets for security applications and propose a number of qualitative and quantitative metrics which can be evaluated with limited domain knowledge. We illustrate the need for such metrics by analyzing a number of datasets for anomaly and intrusion detection in automotive systems, covering both internal vehicle network and vehicle-to-vehicle (V2V) communication. We demonstrate how the proposed metrics can be used to learn the strengths and weaknesses in these datasets.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery , 2022. artikel-id 2
Serie
CSCS ’22
Nyckelord [en]
automotive security, intrusion detection, data quality
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-62374DOI: 10.1145/3568160.3570226ISBN: 978-1-4503-9786-5 (digital)OAI: oai:DiVA.org:ri-62374DiVA, id: diva2:1730300
Konferens
CSCS '22: Proceedings of the 6th ACM Computer Science in Cars Symposium
Anmärkning

This research was supported by the Vinnova FFI project "CyReV:Cyber Resilience for Vehicles" under the grants 2018-05013 and2019-03071.

Tillgänglig från: 2023-01-24 Skapad: 2023-01-24 Senast uppdaterad: 2023-04-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Rosenstatter, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Rosenstatter, Thomas
Av organisationen
DatavetenskapMobilitet och system
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 216 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf