Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hyperseed: Unsupervised Learning With Vector Symbolic Architectures
Luleå University of Technology, Sweden.
La Trobe University, Australia.
La Trobe University, Australia.
La Trobe University, Australia.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: IEEE Transactions on Neural Networks and Learning Systems, ISSN 2162-237X, E-ISSN 2162-2388, Vol. 12, nr 12, artikel-id e202300141Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivated by recent innovations in biologically inspired neuromorphic hardware, this article presents a novel unsupervised machine learning algorithm named Hyperseed that draws on the principles of vector symbolic architectures (VSAs) for fast learning of a topology preserving feature map of unlabeled data. It relies on two major operations of VSA, binding and bundling. The algorithmic part of Hyperseed is expressed within the Fourier holographic reduced representations (FHRR) model, which is specifically suited for implementation on spiking neuromorphic hardware. The two primary contributions of the Hyperseed algorithm are few-shot learning and a learning rule based on single vector operation. These properties are empirically evaluated on synthetic datasets and on illustrative benchmark use cases, IRIS classification, and a language identification task using the $n$ -gram statistics. The results of these experiments confirm the capabilities of Hyperseed and its applications in neuromorphic hardware.

Ort, förlag, år, upplaga, sidor
2023. Vol. 12, nr 12, artikel-id e202300141
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-62510DOI: 10.1109/TNNLS.2022.3211274OAI: oai:DiVA.org:ri-62510DiVA, id: diva2:1729793
Tillgänglig från: 2023-01-23 Skapad: 2023-01-23 Senast uppdaterad: 2024-06-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Kleyko, Denis

Sök vidare i DiVA

Av författaren/redaktören
Kleyko, Denis
Av organisationen
Datavetenskap
I samma tidskrift
IEEE Transactions on Neural Networks and Learning Systems
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 62 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf