Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel machine learning approach to predict short-term energy load for future low-temperature district heating
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-5091-6285
NTNU, Norway.
KTH Royal Institute of Technology, Sweden; Uponor AB, Sweden.
2022 (Engelska)Ingår i: The REHVA European HVAC Journal, nr Dec, s. 19-24Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this work, we develop machine learning methods to forecast the day-ahead heating energy demand of district heating (DH) end-users in hourly resolution, using existing metering data for DH end-users and weather data. The focus of the study is a detailed analysis of the accuracy levels of short-term load prediction methods. In particular, accuracy levels are quantified for Artificial Neural Network (ANN) models with variations in the input parameters. The importance of historical data is investigated – in particular the importance of including historical hourly heating loads as input to the forecasting model. Additionally, the impact of different lengths of the historical input data is studied. Our methods are evaluated and validated using metering data from a live use-case in a Scandinavian environment, collected from 20 DH-supplied nursing homes through the years of 2016 to 2019. This study demonstrates that, although there is a strong linear relationship between outdoor temperature and heating load, it is still important to include historical heating loads as an input for prediction of future heating loads. Furthermore, the results show that it is important to include historical data from at least the preceding 24 hours, but suggest diminishing returns of including data much further back than that. The resulting models demonstrate the practical feasibility of such prediction models in a live use-case.

Ort, förlag, år, upplaga, sidor
2022. nr Dec, s. 19-24
Nyckelord [en]
Low-temperature district heating, short-term load prediction, machine learning, Scandinavian climate.
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-62546OAI: oai:DiVA.org:ri-62546DiVA, id: diva2:1728203
Konferens
REHVA 14th HVAC World Congress. 22-25 May, 2022. Rotterdam, Netherlands.
Tillgänglig från: 2023-01-18 Skapad: 2023-01-18 Senast uppdaterad: 2023-06-08Bibliografiskt granskad

Open Access i DiVA

fulltext(780 kB)63 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 780 kBChecksumma SHA-512
80d05d190a7c422b935cd7bf93b2087e00d55786c5c517a5fadc34c52ba0dbcf388a9efdfa0189e1702ce68dd8a172efec3ed36d5154eac66a2a05bd65e3b235
Typ fulltextMimetyp application/pdf

Person

Timoudas, Thomas Ohlson

Sök vidare i DiVA

Av författaren/redaktören
Timoudas, Thomas Ohlson
Av organisationen
Datavetenskap
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 63 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 212 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf