Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
To the Most Gracious Highness, from Your Humble Servant: Analysing Swedish 18th Century Petitions Using Text Classification
Uppsala University, Sweden.
Uppsala University, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Uppsala University, Sweden.ORCID-id: 0000-0002-7873-3971
2022 (Engelska)Ingår i: Proceedings of the 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, 2022, s. 53-64Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Petitions are a rich historical source, yet they have been relatively little used in historical research. In this paper, we aim to analyse Swedish texts from around the 18th century, and petitions in particular, using automatic means of text classification. We also test how text pre-processing and different feature representations affect the result, and we examine feature importance for our main class of interest – petitions. Our experiments show that the statistical algorithms NB, RF, SVM, and kNN are indeed very able to classify different genres of historical text. Further, we find that normalisation has a positive impact on classification, and that content words are particularly informative for the traditional models. A fine-tuned BERT model, fed with normalised data, outperforms all other classification experiments with a macro average F1 score at 98.8. However, using less computationally expensive methods, including feature representation with word2vec, fastText embeddings or even TF-IDF values, with a SVM classifier also show good results for both unnormalised and normalised data. In the feature importance analysis, where we obtain the features most decisive for the classification models, we find highly relevant characteristics of the petitions, namely words expressing signs of someone inferior addressing someone superior.

Ort, förlag, år, upplaga, sidor
2022. s. 53-64
Nationell ämneskategori
Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:ri:diva-62060OAI: oai:DiVA.org:ri-62060DiVA, id: diva2:1722928
Konferens
The 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
Tillgänglig från: 2023-01-01 Skapad: 2023-01-01 Senast uppdaterad: 2023-01-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Full text

Person

Nivre, Joakim

Sök vidare i DiVA

Av författaren/redaktören
Nivre, Joakim
Av organisationen
Datavetenskap
Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 130 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf