Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive Control of Data Center Cooling using Deep Reinforcement Learning
Lund University, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0003-4293-6408
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-9759-5594
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Proceedings - 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2022, Institute of Electrical and Electronics Engineers Inc. , 2022Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this paper, we explore the use of Reinforcement Learning (RL) to improve the control of cooling equipment in Data Centers (DCs). DCs are inherently complex systems, and thus challenging to model from first principles. Machine learning offers a way to address this by instead training a model to capture the thermal dynamics of a DC. In RL, an agent learns to control a system through trial-and-error. However, for systems such as DCs, an interactive trial-and-error approach is not possible, and instead, a high-fidelity model is needed. In this paper, we develop a DC model using Computational Fluid Dynamics (CFD) based on the Lattice Boltzmann Method (LBM) Bhatnagar-Gross-Krook (BGK) algorithm. The model features transient boundary conditions for simulating the DC room, heat-generating servers, and Computer Room Air Handlers (CRAHs) as well as rejection components outside the server room such as heat exchangers, compressors, and dry coolers. This model is used to train an RL agent to control the cooling equipment. Evaluations show that the RL agent can outperform traditional controllers and also can adapt to changes in the environment, such as equipment breaking down. 

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2022.
Nyckelord [en]
Adaptive Control, CFD Modeling, Data-center Cooling, Reinforcement Learning, Adaptive control systems, Computational fluid dynamics, Controllers, Cooling, Deep learning, Learning systems, Computational fluid dynamics modeling, Cooling equipment, Data center cooling, Datacenter, First principles, Machine-learning, Reinforcement learning agent, Reinforcement learnings, Thermal dynamics
Nationell ämneskategori
Reglerteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-61598DOI: 10.1109/ACSOSC56246.2022.00018Scopus ID: 2-s2.0-85143075382ISBN: 9781665471374 (digital)OAI: oai:DiVA.org:ri-61598DiVA, id: diva2:1721193
Konferens
3rd IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2022, 19 September 2022 through 23 September 2022
Anmärkning

Funding details: VINNOVA, ITEA3-17002; Funding text 1: This work was supported by Vinnova grant ITEA3-17002 (AutoDC).

Tillgänglig från: 2022-12-21 Skapad: 2022-12-21 Senast uppdaterad: 2023-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Brännvall, RickardGustafsson, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Brännvall, RickardGustafsson, Jonas
Av organisationen
Datavetenskap
Reglerteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 33 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf