Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Novel Method for Smart Fire Detection Using Acoustic Measurements and Machine Learning: Proof of Concept
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-5032-4367
Lund University, Sweden.
Lund University, Sweden.
IVL Swedish Environmental Research Institute, Sweden.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 58, s. 3385-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Fires are a major hazard resulting in high monetary costs, personal suffering, and irreplaceable losses. The consequences of a fire can be mitigated by early detection systems which increase the potential for successful intervention. The number of false alarms in current systems can for some applications be very high, but could be reduced by increasing the reliability of the detection system by using complementary signals from multiple sensors. The current study investigates the novel use of machine learning for fire event detection based on acoustic sensor measurements. Many materials exposed to heat give rise to acoustic emissions during heating, pyrolysis and burning phases. Further, sound is generated by the heat flow associated with the flame itself. The acoustic data collected in this study is used to define an acoustic sound event detection task, and the proposed machine learning method is trained to detect the presence of a fire event based on the emitted acoustic signal. The method is able to detect the presence of fire events from the examined material types with an overall F-score of 98.4%. The method has been developed using laboratory scale tests as a proof of concept and needs further development using realistic scenarios in the future. © 2022, The Author(s).

Ort, förlag, år, upplaga, sidor
Springer , 2022. Vol. 58, s. 3385-
Nyckelord [en]
Acoustic emissions, Artificial intelligence, Deep neural networks, Fire detection, Machine learning, Sound, Acoustic emission testing, Acoustic variables measurement, Fire detectors, Fires, Learning systems, Acoustic measurements, Acoustic-emissions, Early detection system, Fire event, Machine-learning, Major hazards, Monetary costs, Novel methods, Proof of concept
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:ri:diva-60272DOI: 10.1007/s10694-022-01307-1Scopus ID: 2-s2.0-85137843831OAI: oai:DiVA.org:ri-60272DiVA, id: diva2:1702149
Anmärkning

 Funding details: 2019-00954; Funding details: Svenska Forskningsrådet Formas; Funding text 1: The work presented in this article was funded by FORMAS, the Swedish Research Council for Sustainable Development (Contract Number: 2019-00954).

Tillgänglig från: 2022-10-10 Skapad: 2022-10-10 Senast uppdaterad: 2023-07-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Martinsson, JohnMcNamee, MargaretMogren, Olof

Sök vidare i DiVA

Av författaren/redaktören
Martinsson, JohnMcNamee, MargaretMogren, Olof
Av organisationen
Datavetenskap
I samma tidskrift
Fire technology
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 115 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf