Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
RWS-L-SHADE: An Effective L-SHADE Algorithm Incorporation Roulette Wheel Selection Strategy for Numerical Optimisation
Hakim Sabzevari University, Iran.
RISE Research Institutes of Sweden, Digitala system, Industriella system. Mälardalen University, Sweden.ORCID-id: 0000-0003-3354-1463
Mälardalen University, Sweden.
UNSW Canberra at ADFA, Australia.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Volume 13224 LNCS, Pages 255 - 2682022, Springer Science and Business Media Deutschland GmbH , 2022, s. 255-268Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Differential evolution (DE) is widely used for global optimisation problems due to its simplicity and efficiency. L-SHADE is a state-of-the-art variant of DE algorithm that incorporates external archive, success-history-based parameter adaptation, and linear population size reduction. L-SHADE uses a current-to-pbest/1/bin strategy for mutation operator, while all individuals have the same probability to be selected. In this paper, we propose a novel L-SHADE algorithm, RWS-L-SHADE, based on a roulette wheel selection strategy so that better individuals have a higher priority and worse individuals are less likely to be selected. Our extensive experiments on the CEC-2017 benchmark functions and dimensionalities of 30, 50 and 100 indicate that RWS-L-SHADE outperforms L-SHADE.

Ort, förlag, år, upplaga, sidor
Springer Science and Business Media Deutschland GmbH , 2022. s. 255-268
Nyckelord [en]
CEC-2017 benchmark functions, Differential evolution, L-SHADE algorithm, Optimisation, Roulette wheel selection strategy, Global optimization, Wheels, Benchmark functions, CEC-2017 benchmark function, Differential evolution algorithms, Global optimization problems, Numerical optimizations, Optimisations, Roulette-wheel selections, State of the art, Population statistics
Nationell ämneskategori
Farkostteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-59243DOI: 10.1007/978-3-031-02462-7_17Scopus ID: 2-s2.0-85129308303ISBN: 9783031024610 (digital)OAI: oai:DiVA.org:ri-59243DiVA, id: diva2:1668537
Konferens
25th European Conference on the Applications of Evolutionary Computation, EvoApplications 2022Madrid20 April 2022 through 22 April 2022
Tillgänglig från: 2022-06-13 Skapad: 2022-06-13 Senast uppdaterad: 2022-06-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Helali Moghadam, Mahshid

Sök vidare i DiVA

Av författaren/redaktören
Helali Moghadam, Mahshid
Av organisationen
Industriella system
Farkostteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 22 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf