Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Reinforcement Learning for Automated Energy Efficient Mobile Network Performance Tuning
Ericsson AB, Sweden; KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden<.ORCID-id: 0000-0001-7949-1815
2021 (Engelska)Ingår i: 2021 17th International Conference on Network and Service Management (CNSM), 2021, s. 216-224Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Modern mobile networks are increasingly complex from a resource management perspective, with diverse combinations of software, infrastructure elements and services that need to be configured and tuned for correct and efficient operation. It is well accepted in the communications community that appropriately dimensioned, efficient and reliable configurations of systems like 5G or indeed its predecessor 4G is a massive technical challenge. One promising avenue is the application of machine learning methods to apply a data-driven and continuous learning approach to automated system performance tuning. We demonstrate the effectiveness of policy-gradient reinforcement learning as a way to learn and apply complex interleaving patterns of radio resource block usage in 4G and 5G, in order to automate the reduction of cell edge interference. We show that our method can increase overall spectral efficiency up to 25% and increase the overall system energy efficiency up to 50% in very challenging scenarios by learning how to do more with less system resources. We also introduce a flexible phased and continuous learning approach that can be used to train a bootstrap model in a simulated environment after which the model is transferred to a live system for continuous contextual learning.

Ort, förlag, år, upplaga, sidor
2021. s. 216-224
Nyckelord [en]
5G mobile communication, Spectral efficiency, System performance, Reinforcement learning, Interference, Energy efficiency, Software, Communication system traffic, Machine learning, Learning systems, System simulation, Self-organization, Radio resource scheduling, Inter-cell interference coordination
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:ri:diva-57473DOI: 10.23919/CNSM52442.2021.9615550OAI: oai:DiVA.org:ri-57473DiVA, id: diva2:1623215
Konferens
2021 17th International Conference on Network and Service Management (CNSM). 25-29 Oct. 2021.
Tillgänglig från: 2021-12-28 Skapad: 2021-12-28 Senast uppdaterad: 2022-01-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Kreuger, PerBoman, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Kreuger, PerBoman, Magnus
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 137 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf