Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A population-based automatic clustering algorithm for image segmentation
Hakim Sabzevari University, Iran.
Loughborough University, UK.
Mälardalen University, Sweden.ORCID-id: 0000-0003-3354-1463
RISE Research Institutes of Sweden, Digitala system, Industriella system.ORCID-id: 0000-0002-1512-0844
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, Association for Computing Machinery, Inc , 2021, s. 1931-1936Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Clustering is one of the prominent approaches for image segmentation. Conventional algorithms such as k-means, while extensively used for image segmentation, suffer from problems such as sensitivity to initialisation and getting stuck in local optima. To overcome these, population-based metaheuristic algorithms can be employed. This paper proposes a novel clustering algorithm for image segmentation based on the human mental search (HMS) algorithm, a powerful population-based algorithm to tackle optimisation problems. One of the advantages of our proposed algorithm is that it does not require any information about the number of clusters. To verify the effectiveness of our proposed algorithm, we present a set of experiments based on objective function evaluation and image segmentation criteria to show that our proposed algorithm outperforms existing approaches.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery, Inc , 2021. s. 1931-1936
Nyckelord [en]
automatic clustering, human mental search, image segmentation, optimisation, population-based algorithms, Evolutionary algorithms, Optimization, Automatic clustering algorithm, Conventional algorithms, K-means, Local optima, Meta heuristic algorithm, Number of clusters, Optimisation problems, Population-based algorithm, K-means clustering
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-55664DOI: 10.1145/3449726.3463148Scopus ID: 2-s2.0-85111017050ISBN: 9781450383516 (tryckt)OAI: oai:DiVA.org:ri-55664DiVA, id: diva2:1583745
Konferens
2021 Genetic and Evolutionary Computation Conference, GECCO 2021, 10 July 2021 through 14 July 2021
Anmärkning

Funding text 1: This work has been supported by ITEA3 European IVVES project (https://itea3.org/project/ivves.html).

Tillgänglig från: 2021-08-09 Skapad: 2021-08-09 Senast uppdaterad: 2023-10-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Helali Moghadam, MahshidSaadatmand, Mehrdad

Sök vidare i DiVA

Av författaren/redaktören
Helali Moghadam, MahshidSaadatmand, Mehrdad
Av organisationen
Industriella system
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 123 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf