Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CFD modeling of pyrolysis oil combustion using finite rate chemistry
RISE Research Institutes of Sweden, Bioekonomi och hälsa, Bioraffinaderi och energi.
Lund University, Sweden.
Lund University, Sweden.
RISE Research Institutes of Sweden, Bioekonomi och hälsa, Bioraffinaderi och energi.ORCID-id: 0000-0002-6473-7090
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 299, artikel-id 120856Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper reports the first Computational Fluid Dynamics (CFD) model developed for biomass pyrolysis oil spray combustion using Finite-Rate Chemistry (FRC) approach. To make the CFD calculations feasible, a reduced mechanism for modeling the combustion of biomass Fast Pyrolysis Oil (FPO) based on the POLIMI 1412 mechanism and a model for eugenol oxidation was developed. The reduced mechanism consisted of 200 reactions and 71 species. This level of complexity was found to be a good tradeoff between predictive power and computational cost such that the reduced model could be used in CFD modeling. The predictive power of the reduced mechanism was demonstrated via 0D (adiabatic, premixed, constant pressure reactor), 1D (laminar counterflow flame) and 3D (CFD of a methane-air flat-flame piloted FPO spray flame) calculations. Results from CFD were compared against experimental data from non-intrusive optical diagnostics. The reduced model was successfully used in CFD calculations—the computational cost was approximately 2 orders of magnitude higher than that of a simplified model. Using the reduced mechanism, the concentration of pollutants, minor combustion products, and flame radicals could be predicted—this is added capability compared to already existing models. The CFD model using the reduced mechanism showed quantitative predictive power for major combustion products, flame temperature, some pollutants and temperature, and qualitative predictive power for flame radicals and soot. © 2021 The Authors

Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2021. Vol. 299, artikel-id 120856
Nyckelord [en]
Biomass, Chemical kinetics, Computational Fluid Dynamics, Fast Pyrolysis Oil, Finite-Rate Chemistry, Laser diagnostics, Spray combustion
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:ri:diva-53008DOI: 10.1016/j.fuel.2021.120856Scopus ID: 2-s2.0-85105060454OAI: oai:DiVA.org:ri-53008DiVA, id: diva2:1557498
Anmärkning

Funding details: Energimyndigheten; Funding details: Energimyndigheten, EM 44110-1; Funding text 1: The financial support of the Swedish Energy Agency (Energimyndigheten) through the project “Computational Optimization of Gas Turbine Combustors Firing Biomass Fast Pyrolysis Oil” (EM 44110-1) and the Swedish Government through Bio4Energy program is greatly acknowledged

Tillgänglig från: 2021-05-26 Skapad: 2021-05-26 Senast uppdaterad: 2023-05-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Ögren, YngveWiinikka, Henrik

Sök vidare i DiVA

Av författaren/redaktören
Ögren, YngveWiinikka, Henrik
Av organisationen
Bioraffinaderi och energi
I samma tidskrift
Fuel
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf