Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Chassis Hardware Fault Diagnostics with Hidden Markov Model Based Clustering
Chalmers University Of Technology, Sweden.
Volvo Cars, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0002-5032-4367
Volvo Cars, Sweden.
2020 (Engelska)Ingår i: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Predictive maintenance is a key component regarding cost reduction in automotive industry and is of great importance. It can improve both feeling of comfort and safety, by means of early detection, isolation and prediction of prospective failures. That is why automotive industry and fleet managers are turning to predictive analytic to maintain a lead position in industry. A patent application has been recently submitted, proposing a two stage solution, including a real-time solution (onboard diagnostic system) and an offline solution (in the back-end), for health monitoring/assessment of different chassis components. Hardware faults are detected based on changes of the fundamental eigen-frequencies of the vehicle where time series of interest, from in-car sensory system, are collected/reported for advanced data analytic in the backend. The main focus of this paper in on the latter solution, using an unsupervised machine learning approach. A clustering approach based on Mixture of Hidden Markov Models, is adopted to conduct automatic diagnosis and isolation of faults. Detection and isolation of tyre and wheel bearing faults has been considered for this study but same framework can be used to handle other components faults, such as suspension system faults. In order to validate the performance of the proposed approach tests were performed at Hallared test track in Gothenburg, and data were collected for two faulty states (for faulty wheel bearing and low-tyre pressure) and no-fault state.

Ort, förlag, år, upplaga, sidor
2020.
Nyckelord [en]
Hidden Markov models, Wheels, Automobiles, Hardware, Time series analysis, Real-time systems, Patents
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-51878DOI: 10.1109/ITSC45102.2020.9294468OAI: oai:DiVA.org:ri-51878DiVA, id: diva2:1519202
Konferens
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
Tillgänglig från: 2021-01-18 Skapad: 2021-01-18 Senast uppdaterad: 2023-05-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Martinsson, John

Sök vidare i DiVA

Av författaren/redaktören
Martinsson, John
Av organisationen
Datavetenskap
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 26 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf