Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recurrent Conditional Generative Adversarial Networks forAutonomous Driving Sensor Modelling
Zenuity AB, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-7856-113X
Zenuity AB, Sweden.
2019 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

 Simulation of the real world is a widely researchedtopic in various fields. The automotive industry in particular isvery dependent on real world simulations, since these simulations are needed in order to prove the safety of advance driverassistance systems (ADAS) and autonomous driving (AD). Inthis paper we propose a deep learning based model for simulating the outputs from production sensors used in autonomousvehicles. We introduce an improved Recurrent ConditionalGenerative Adversarial Network (RC-GAN) consisting of Recurrent Neural Networks (RNNs) that use Long Short-TermMemory (LSTM) in both the generator and the discriminatornetworks in order to generate production sensor errors thatexhibit long-term temporal correlations. The network is trainedin a sequence-to-sequence fashion where we condition theoutput from the model on sequences describing the surroundingenvironment. This enables the model to capture spatial andtemporal dependencies, and the model is used to generatesynthetic time series describing the errors in a productionsensor which can be used for more realistic simulations. Themodel is trained on a data set collected from real roads withvarious traffic settings, and yields significantly better results ascompared to previous works.

Ort, förlag, år, upplaga, sidor
2019.
Nyckelord [en]
Time series analysis, Generators, Gallium nitride, Generative adversarial networks, Production, Hidden Markov models, Computational modeling
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-51871DOI: 10.1109/ITSC.2019.8916999OAI: oai:DiVA.org:ri-51871DiVA, id: diva2:1519026
Konferens
2019 IEEE Intelligent Transportation Systems Conference (ITSC). 27-30 Oct. 2019. Auckland, New Zealand.
Tillgänglig från: 2021-01-18 Skapad: 2021-01-18 Senast uppdaterad: 2024-07-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Zec, Edvin Listo

Sök vidare i DiVA

Av författaren/redaktören
Zec, Edvin Listo
Av organisationen
Datavetenskap
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 219 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf