Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Autonomous accident monitoring using cellular network data
RISE., Swedish ICT, SICS.ORCID-id: 0000-0001-9244-4546
RISE., Swedish ICT, SICS.ORCID-id: 0000-0002-9331-0352
RISE., Swedish ICT, SICS.ORCID-id: 0000-0001-8952-3542
2013 (Engelska)Ingår i: ISCRAM 2013 Conference Proceedings - 10th International Conference on Information Systems for Crisis Response and Management, Karlsruher Institut fur Technologie (KIT) , 2013, s. 638-646Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Mobile communication networks constitute large-scale sensor networks that generate huge amounts of data that can be refined into collective mobility patterns. In this paper we propose a method for using these patterns to autonomously monitor and detect accidents and other critical events. The approach is to identify a measure that is approximately time-invariant on short time-scales under regular conditions, estimate the short and long-term dynamics of this measure using Bayesian inference, and identify sudden shifts in mobility patterns by monitoring the divergence between the short and long-term estimates. By estimating long-term dynamics, the method is also able to adapt to long-term trends in data. As a proof-of-concept, we apply this approach in a vehicular traffic scenario, where we demonstrate that the method can detect traffic accidents and distinguish these from regular events, such as traffic congestions.

Ort, förlag, år, upplaga, sidor
Karlsruher Institut fur Technologie (KIT) , 2013. s. 638-646
Nyckelord [en]
Anomaly detection, Cellular networks, Crisis management, Emergency response, Mobility, Bayesian networks, Carrier mobility, Inference engines, Information systems, Sensor networks, Traffic congestion, Bayesian inference, Cellular network, Large scale sensor network, Mobile communication networks, Vehicular traffic scenarios, Accidents
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:ri:diva-50261Scopus ID: 2-s2.0-84905659288ISBN: 9783923704804 (tryckt)OAI: oai:DiVA.org:ri-50261DiVA, id: diva2:1489815
Konferens
10th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2013, 12 May 2013 through 15 May 2013, Baden-Baden
Tillgänglig från: 2020-11-03 Skapad: 2020-11-03 Senast uppdaterad: 2023-06-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Person

Görnerup, OlofKreuger, PerGillblad, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Görnerup, OlofKreuger, PerGillblad, Daniel
Av organisationen
SICS
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 28 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf