Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Guidance of spiral ganglion neurons over 3 mm using protein patterned surfaces in Co-culture
Karolinska Institute, Sweden.
Karolinska Institute, Sweden.
RISE., Swedish ICT, Acreo.
RISE., Swedish ICT, Acreo.
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Tissue Engineering and Regenerative Medicine, ISSN 1738-2696, Vol. 11, nr 3, s. 187-194Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Despite considerable advances in neural prosthetics there are still few clinical devices capable of effectively compensating for the loss of a physiological function. By far the most successful to date are cochlear implants, which can restore the auditory function in patients with severe sensorineural impairment. These implants have electrode arrays that directly stimulate the remaining neurons and several strategies are applied to encourage neurons to interact intimately with the electrodes. Integration of the residual neurons into the circuits can be aided by appropriate micro-patterning on the electrodes' surfaces to guide the regenerating neurons. Here we describe experiments revealing key features of the interface between auditory cell cultures and surface patterning. In the presented study linear regenerative outgrowth of spiral ganglion axons occurred over distances of several hundred micrometers in the presence of extracellular protein cues placed precisely on surfaces by micro-contact printing. The protein pattern guided the outgrowth of spiral ganglion neurons along interconnected networks of non-neuronal cells. High-precision alignment of axons with no branching or deviation was influenced by, but not dependent upon, the presence of non-glial cells. The findings show that micro-patterning provides a versatile, robust system that can not only guide the outgrowth of individual neurons but also regulate the orientation of diverse cell types in culture. © 2014 The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media Dordrecht.

Ort, förlag, år, upplaga, sidor
Kluwer Academic Publishers , 2014. Vol. 11, nr 3, s. 187-194
Nyckelord [en]
fibroblast, in vitro, micro-pattern, neuron, spiral ganglion, Cell culture, Electrodes, Fibroblasts, Proteins, Extracellular proteins, In-vitro, Micro contact printing, Micro pattern, Physiological functions, Sensori-neural impairment, Spiral ganglion neurons, Neurons, animal cell, article, cell type, cochlea prosthesis, coculture, controlled study, electrode, hearing, medical device, mouse, nonhuman, priority journal, protein analysis
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:ri:diva-46232DOI: 10.1007/s13770-014-0035-6Scopus ID: 2-s2.0-84903746708OAI: oai:DiVA.org:ri-46232DiVA, id: diva2:1458616
Anmärkning

Funding details: European Commission, EC, LSHG-CT-20054-512063

Tillgänglig från: 2020-08-17 Skapad: 2020-08-17 Senast uppdaterad: 2020-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus
Av organisationen
Acreo
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 27 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf