Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Open-Source Data Collection and Data Sets for Activity Recognition in Smart Homes
Örebro University, Sweden.
Örebro University, Sweden.
Örebro University, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. (Connected Intelligence)ORCID-id: 0000-0003-3139-2564
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Sensors, E-ISSN 1424-8220, Vol. 20, nr 3, artikel-id 879Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

As research in smart homes and activity recognition is increasing, it is of ever increasing importance to have benchmarks systems and data upon which researchers can compare methods.While synthetic data can be useful for certain method developments, real data sets that are open and shared are equally as important. This paper presents the E-care@home system, its installation in a real home setting, and a series of data sets that were collected using the E-care@home system. Our first contribution, the E-care@home system, is a collection of software modules for data collection, labeling, and various reasoning tasks such as activity recognition, person counting, and configuration planning.It supports a heterogeneous set of sensors that can be extended easily and connects collected sensor data to higher-level Artificial Intelligence (AI) reasoning modules. Our second contribution is a series of open data sets which can be used to recognize activities of daily living. In addition to these data sets, we describe the technical infrastructure that we have developed to collect the data and the physical environment. Each data set is annotated with ground-truth information, making it relevant for researchers interested in benchmarking different algorithms for activity recognition.

Ort, förlag, år, upplaga, sidor
MDPI, 2020. Vol. 20, nr 3, artikel-id 879
Nyckelord [en]
smart home data sets; data collection software; prototype installation
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-43882DOI: 10.3390/s20030879Scopus ID: 2-s2.0-85079189175OAI: oai:DiVA.org:ri-43882DiVA, id: diva2:1392847
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2020-02-13 Skapad: 2020-02-13 Senast uppdaterad: 2023-05-26Bibliografiskt granskad

Open Access i DiVA

fulltext(1800 kB)144 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1800 kBChecksumma SHA-512
e501bd639283e42bfb343d5bc618d076a7c60ee90fa08233ee339518570bf411a209e2ca678d71589bff122fc92560be60f0a3c096cc1a7392337460d7680df5
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Tsiftes, Nicolas

Sök vidare i DiVA

Av författaren/redaktören
Tsiftes, Nicolas
Av organisationen
Datavetenskap
I samma tidskrift
Sensors
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 144 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 140 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf