Design of a local energy market with multiple energy carriers
2020 (Engelska)Ingår i: International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, E-ISSN 1879-3517, Vol. 118, artikel-id 105739Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
Recent developments in the electric power sector as well as in district heating and cooling systems has led to an increased interest in local energy systems and markets. In the electricity sector, this is driven by the integration of distributed resources such as solar power, electric vehicles and demand response. For district heating, sustainability and energy efficiency targets drives the development to further exploit small-scale heat sources. A closer integration of these energy carriers can also unlock potential flexibility, to the benefit of local as well as overlaying systems. In this respect, there is a need to further explore the possibilities to design local energy markets to facilitate the integration between electricity and district heating, as well as providing adequate instruments enabling flexibility. This paper therefore presents a market clearing design, based on optimization, for local energy markets incorporating multiple energy carriers and bid structures suitable for representing flexibility. The market clearing model is applied in a case study to illustrate and validate key design elements. One conclusion is that even though various elements can be added to the market clearing function, there is a challenge to interpret the results due to an increased complexity of the resulting optimization problem.
Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2020. Vol. 118, artikel-id 105739
Nyckelord [en]
Distributed energy resources, Energy system integration, Local energy system, Market design, Automobile cooling systems, District heating, Energy efficiency, Power markets, Solar energy, Distributed resources, District heating and cooling systems, Electric power sector, Energy systems, Local energy systems, Optimization problems, Commerce
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-43382DOI: 10.1016/j.ijepes.2019.105739Scopus ID: 2-s2.0-85076467107OAI: oai:DiVA.org:ri-43382DiVA, id: diva2:1390375
Anmärkning
Funding details: UIA01-209; Funding text 1: The work presented in this paper has been financially supported by the Fossil Free Energy project, funded by the European Urban Innovation Actions program (project No. UIA01-209 ), and the m2M-GRID project, funded by the ERA-Net Smart Energy Systems program (project No. #82136).
2020-01-312020-01-312020-12-01Bibliografiskt granskad