Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Encoding sequential information in semantic space models: Comparing holographic reduced representation and random permutation
University of Cambridge, UK.
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0001-5100-0535
University of California, USA.
Indiana University, US.
2015 (Engelska)Ingår i: Computational Intelligence and Neuroscience, ISSN 1687-5265, E-ISSN 1687-5273, Vol. 2015, artikel-id 986574Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, "noisy" permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. 

Ort, förlag, år, upplaga, sidor
Hindawi Limited , 2015. Vol. 2015, artikel-id 986574
Nyckelord [en]
Convolution, Vector spaces, Binding operator, Circular convolutions, Holographic reduced representations, One-to-one mappings, Random permutations, Semantic memory, Sequential information, Vector space models, Encoding (symbols), human, information retrieval, linguistics, natural language processing, semantics, space flight, Humans, Information Storage and Retrieval, Space Simulation, Vocabulary
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:ri:diva-43188DOI: 10.1155/2015/986574Scopus ID: 2-s2.0-84928485033OAI: oai:DiVA.org:ri-43188DiVA, id: diva2:1387053
Tillgänglig från: 2020-01-20 Skapad: 2020-01-20 Senast uppdaterad: 2020-01-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Sahlgren, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Sahlgren, Magnus
Av organisationen
SICS
I samma tidskrift
Computational Intelligence and Neuroscience
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf