Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: Roles of pectin
University of Queensland, Australia.
University of Queensland, Australia; Australian Nuclear Science and Technology Organisation, Australia.
University of Queensland, Australia.
University of Queensland, Australia.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 98, artikel-id 105253Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The hierarchical organisation of polysaccharides in primary plant cell walls is responsible for their unique mechanical properties, and in turn for the textural and rheological properties of plant-based foods and ingredients. It is expected that at the nano scale, the mechanical properties of cell wall materials arise from a combination of structural deformation of the polysaccharide networks and hydraulic properties of the continuous water phase, as has been shown for other cellulose-based composites. Pectin plays a key role in the load bearing properties of (bacterial) cellulose-pectin composites due to its contribution to both hydration structure and the dynamics of water movement. To investigate whether these features are also important in plant cell wall materials we have used a set of advanced characterisation techniques to elucidate cell wall structural features at different length scales (X-ray diffraction and small angle X-ray and neutron scattering) in cell walls from two dicotyledons (apple and carrot) and a non-commelinid monocotyledon (onion). The strength of isolated cell walls was measured under compression and fitted to a poroviscoelastic mechanical model, demonstrating that the mechanical properties of the isolated cell wall materials are directly linked to both polysaccharide networks and fluid flow through the networks. Our results show how pectin polysaccharides influence the viscoelastic behaviour of these materials and contribute to the texture of plant-derived food systems. 

Ort, förlag, år, upplaga, sidor
Elsevier B.V. , 2020. Vol. 98, artikel-id 105253
Nyckelord [en]
Cell wall structure, Cellulose, Rheology, Small angle neutron scattering, Small angle x-ray scattering
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-39726DOI: 10.1016/j.foodhyd.2019.105253Scopus ID: 2-s2.0-85069968840OAI: oai:DiVA.org:ri-39726DiVA, id: diva2:1341952
Anmärkning

Funding details: Centre of Excellence in Plant Energy Biology, Australian Research Council, PEB, CE110001007; Funding text 1: The authors would like to thank Prof Jason R. Stokes for access to the rheometer. This study was funded by the Australian Research Council Centre of Excellence in Plant Cell Walls CE110001007 . Appendix A

Tillgänglig från: 2019-08-12 Skapad: 2019-08-12 Senast uppdaterad: 2019-08-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus
I samma tidskrift
Food Hydrocolloids
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7