Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Interactive clustering for exploring multiple data streams at different time scales and granularity
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0001-8577-6745
University of Skövde, Sweden.
University of Skövde, Sweden.
Halmstad University, Sweden .
2019 (Engelska)Ingår i: Proceedings of the Workshop on Interactive Data Mining, WIDM 2019, Association for Computing Machinery, Inc , 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We approach the problem of identifying and interpreting clusters over different time scales and granularity in multivariate time series data. We extract statistical features over a sliding window of each time series, and then use a Gaussian mixture model to identify clusters which are then projected back on the data streams. The human analyst can then further analyze this projection and adjust the size of the sliding window and the number of clusters in order to capture the different types of clusters over different time scales. We demonstrate the effectiveness of our approach in two different application scenarios: (1) fleet management and (2) district heating, wherein each scenario, several different types of meaningful clusters can be identified when varying over these dimensions. © 2019 Copyright held by the owner/author(s).

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery, Inc , 2019.
Nyckelord [en]
Clustering, Interaction, Time scales, Time series, Fleet operations, Gaussian distribution, Time measurement, Application scenario, Different time scale, Gaussian Mixture Model, Multiple data streams, Multivariate time series, Time-scales, Data mining
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-39673DOI: 10.1145/3304079.3310286Scopus ID: 2-s2.0-85069762696ISBN: 9781450362962 (tryckt)OAI: oai:DiVA.org:ri-39673DiVA, id: diva2:1341106
Konferens
1st Workshop on Interactive Data Mining, WIDM 2019, co-located with 12th ACM International Conference on Web Search and Data Mining, WSDM 2019, 15 February 2019
Tillgänglig från: 2019-08-07 Skapad: 2019-08-07 Senast uppdaterad: 2023-05-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Holst, Anders

Sök vidare i DiVA

Av författaren/redaktören
Holst, Anders
Av organisationen
SICS
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 35 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf